
can vary significantly across different models. For instance, tree-
based models like Random Forests and Gradient Boosting can give
different importance scores compared to linear models like Logistic
Regression. This variability can lead to inconsistent interpretations
of which features are truly important [2].
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Nirmal et al. presented a machine learning-based design of
ternary organic solar cells, utilizing feature importance [1]. This
paper highlights the alarming potential biases in the use of feature
importance in machine learning, which can lead to incorrect con-
clusions and outcomes. Many scientists and researchers including
Nirmal et al. are unaware that feature importances in machine
learning in general are model-specific and do not necessarily rep-
resent true associations between the target and features.

While machine learning aims to accurately predict the target
using features, feature importances are merely a byproduct of
the process, and their values can vary significantly across different
models. In other words, different models generate different feature
importances, even though true associations between the target and
features exist independently of the models used. Nirmal et al.
employed five machine learning models: classification and regres-
sion tree (CART), random forest (RF), gradient boosting (GB), linear
models (LMs), and artificial neural networks (ANNs). For instance, a
feature deemed highly significant by RF may receive a lower rank-
ing in LM, thereby obscuring true underlying relationships despite
existing associations.

Nirmal et al. demonstrated that individual machine learning
models, such as CART, RF, GB, LM, and ANN, exhibited distinct sets
of feature importances. These variations suggest biases rather than
true associations.

This paper identifies biases of feature importance in machine
learning. Feature importance in machine learning can have poten-
tial biases due to several reasons. Firstly, feature importance values
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Additionally, features with more levels or categories can appear
more important in tree-based models because they have more
opportunities to split the data and reduce impurity, which can give
an inflated sense of their importance and lead to biased interpreta-
tions [3]. The training data used to build the model can also
introduce biases; if the training data is not representative of the
real-world scenario, the feature importance derived from it can
be misleading [4]. Some algorithms might inherently favor certain
types of features over others. For example, algorithms that rely
heavily on correlation might overemphasize features that are
highly correlated with the target variable, even if they are not cau-
sally related [5]. Lastly, complex models, such as deep learning
models, often lack transparency, making it difficult to understand
the true importance of features, which can lead to biased interpre-
tations and decisions based on the model’s output [6]. SHAP relies
on a machine learning model, which means that the feature impor-
tances and explanations it provides are inherently influenced by
the model’s specific characteristics. Using a different model will
result in different explanations from SHAP. In other words, feature
importances derived from machine learning models tend to be
biased. To obtain true associations, feature importances should
be calculated independently of any machine learning models.

Instead of biased feature importance in machine learning,
Chi-squared tests and P-values play a crucial role in calculating true
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associations between the target and features, model independent.
Chi-Squared Tests are a collection of non-parametric statistical
methods used to examine whether there is a significant association
between categorical variables. These tests assess how well the
observed data fit with the expected data under the assumption of
no association. There are several types of Chi-Squared Tests, includ-
ing the Chi-Squared Test of Independence, the Chi-Squared
Goodness-of-Fit Test, and the Chi-SquaredTest forHomogeneity [7].

Y. Takefuji Journal of Energy Chemistry 102 (2025) 49–51

The Chi-Squared Test of Independence is utilized to determine
whether two categorical variables are independent of each other.
On the other hand, the Chi-Squared Goodness-of-Fit Test evaluates
whether the observed frequency distribution of a single categorical
variable matches an expected distribution. The Chi-Squared Test
for Homogeneity is similar to the test of independence but is used
to compare the distribution of a categorical variable across differ-
ent populations, such as comparing product preferences among
various age groups.

The procedure for performing a Chi-Squared Test begins with
formulating hypotheses. The Null Hypothesis (H0) typically states
that there is no association between the variables (they are inde-
pendent), while the Alternative Hypothesis (H1) suggests that there
is an association. The Chi-Squared statistic (v2) is then calculated
using the formula:

v2 Oij Eij
2

Eij

where is the observed frequency and is the expected
frequency.

The degrees of freedom, which for a test of independence is cal-
culated as (number of rows 1) (number of columns 1), are
determined next. The calculated v2 value is compared to a critical
value from the Chi-Squared distribution table based on the degrees
of freedom. If v2 exceeds the critical value, the null hypothesis is
rejected, indicating a significant association between the variables.
It’s important to note that Chi-Squared Tests assume that the data
are in frequencies or counts, categories are mutually exclusive, and
the sample size is sufficiently large, typically with expected fre-
quencies of at least 5.

Moving on to P-Values, a P-Value is a probability measure that
quantifies the evidence against a null hypothesis. Specifically, it
represents the likelihood of obtaining results as extreme as those
observed, assuming that the null hypothesis is true. In hypothesis
testing, a low P-Value (typically 0.05) suggests that the
observed data are unlikely under the null hypothesis, leading to
its rejection in favor of the alternative hypothesis. Conversely, a
high P-Value(> 0.05) indicates insufficient evidence to reject the
null hypothesis, suggesting that the observed data are consistent
with it [8,9]. There is no strict rule for setting a predetermined
significance level; it is often determined by the specific context
and conditions of the study. In many cases, a P-value threshold
of less than 0.05 or 0.01 is commonly used to indicate strong
evidence against the null hypothesis. These levels are selected
based on conventional standards in the field, the research
question, the consequences of Type I and Type II errors, and the
specific needs of the analysis.

The process of utilizing a P-Value involves several steps. First,
hypotheses are set up, with the null hypothesis (H0) stating no
effect or difference, and the alternative hypothesis (H1) proposing
that an effect or difference exists. A significance level (a), com-
monly set at 0.05 or 0.01, is chosen to determine the threshold
for rejecting H0. A test statistic relevant to the specific test being
used is then computed. The P-Value is calculated based on this test
statistic, representing the probability of observing the data—or
something more extreme—under the null hypothesis. If the

P-Value is less than or equal to a, the null hypothesis is rejected;
if it is greater, the null hypothesis is not rejected.
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Chi-Squared Tests and P-Values are closely related in statistical
analysis. When performing a Chi-Squared Test, the calculated Chi-
Squared statistic is used to determine the corresponding P-Value
based on the Chi-Squared distribution with the appropriate
degrees of freedom. This P-Value is then used to decide whether
to reject the null hypothesis of independence or goodness-of-fit.
For instance, in a Chi-Squared Test of Independence, after calculat-
ing the v2 statistic and degrees of freedom, the P-Value is found
using the Chi-Squared distribution. If the P-Value is less than or
equal to the chosen significance level a, the null hypothesis is
rejected, indicating an association between the categorical
variables.

Understanding Chi-Squared Tests and P-Values is fundamental
for making informed decisions in statistical hypothesis testing,
particularly when working with categorical data. These concepts
allow researchers to determine the likelihood that observed
patterns are due to chance or represent a meaningful association
or fit within the data.

Machine learning focuses on accurately predicting the
target, while feature importances highlight the associations
between the target and the features. The proposed statistical
approach complements the machine learning methods without
disrupting them. Prepare data and call Chi-squared function:
chi2_contingency(data). Both Chi-squared tests and P-values are
integral components of inferential statistics, aiding researchers in
validating their hypotheses and assessing the strength of their
findings.

The findings from Nirmal et al. and other similar studies high-
light the need for caution when interpreting feature importance
in machine learning models. The variability in feature importance
values across different models can lead to inconsistent and poten-
tially misleading conclusions about which features are truly impor-
tant. This has significant implications for the design and
optimization of ternary organic solar cells, as well as other applica-
tions in the field of energy chemistry. Researchers and scientists
must be aware that feature importances are model-specific and
do not necessarily represent true associations between the target
and features. This awareness can help in making more informed
decisions and avoiding incorrect conclusions that could impact
the development and performance of solar cells and other
technologies.

This paper does not aim to discourage the use of machine learn-
ing. Instead, it seeks to provide important cautions to researchers
regarding the potential biases associated with feature importance
in machine learning models. By highlighting these concerns, the
paper encourages researchers to adopt a more critical and
informed approach when interpreting feature importance, ensur-
ing that their conclusions and outcomes are based on robust and
reliable analyses. Ultimately, this awareness can lead to more
accurate and meaningful applications of machine learning across
various fields.
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