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A B S T R A C T

Han and Lin’s phase field model for lithium-ion batteries utilizes LASSO regression to analyze battery perfor-
mance during galvanostatic cycling, aiming to simplify the relationship between parameters and Coulombic 
efficiency. Despite demonstrating accuracy, this paper critiques the reliance on LASSO for feature selection, 
highlighting its potential inadequacy in capturing nonlinear interactions within chemical properties. Traditional 
performance metrics, such as MAE, RMSE, and R², provide limited insights regarding individual feature con-
tributions and the nuanced relationships present in the data. This paper advocates for adopting nonparametric 
statistical methods, such as Spearman’s correlation and Kendall’s tau, which can better elucidate complex var-
iable associations and validate feature importance. Incorporating these methods will enhance the robustness of 
findings, promoting a clearer understanding of battery performance dynamics.

Han and Lin developed a phase field (PF) model for a full-cell battery 
undergoing galvanostatic cycling, employing the least absolute 
shrinkage and selection operator (LASSO) regression to analyze and 
predict the battery’s performance evolution throughout the cycling 
process [1]. Their objective was to derive a straightforward and inter-
pretable expression for Coulombic efficiency as a function of the bat-
tery’s parameters, leveraging LASSO’s effective feature selection 
capabilities. To evaluate the model’s performance, the authors utilized 
metrics such as mean absolute error (MAE), root mean square error 
(RMSE), and the coefficient of determination (R²) [1].

While Han and Lin have highlighted the impressive accuracy of PF 
models, this paper raises critical concerns regarding the reliance on 
LASSO for feature selection and validation through standard perfor-
mance metrics such as MAE, RMSE and R². The inherent linearity of 
LASSO may be inadequate for capturing the complexities of chemical 
properties, which frequently exhibit nonlinear and nonparametric be-
haviors. This limitation can result in the omission of significant in-
teractions and relationships within the data, potentially skewing the 
model’s predictive capabilities.

Moreover, interpreting feature importances derived from machine 
learning models like LASSO can be misleading when using metrics such 
as MAE, RMSE, and R². These metrics primarily evaluate overall model 
performance rather than the validity of individual feature contributions 
[2,3]. Consequently, without a robust framework for validating feature 
importance against ground truth values, the insights gained from these 
models may lack reliability. It is essential for Han and Lin to differentiate 
between accuracy in target prediction and accuracy in feature impor-
tance. The metrics of MAE, RMSE, and R² are indicative of model fitting 
but do not effectively validate the accuracy of feature importance, 
raising questions about the robustness of the conclusions drawn from 
their analysis [2,3].

Metrics such as RAE, RMSE, and R² primarily assess model fitting 
rather than prediction accuracy. To accurately evaluate prediction 

accuracy, regression models can be converted into classification models 
using one of two methods: transforming continuous target values into 
integers or employing a ranking system. In classification models, users 
can then compute a variety of metrics, including sensitivity, specificity, 
and overall accuracy, among others. However, it is important to note 
that high prediction accuracy or strong model fitting does not neces-
sarily ensure the reliability of feature importances due to the absence of 
ground truth values for validation.

Machine learning models, including LASSO, inherently produce 
biased feature importances due to their model-specific nature [4,5]. 
Over 100 peer-reviewed articles addressed non-negligible bias in feature 
importances from models. In the absence of ground truth values, 
different models may generate distinct feature importances, further 
compounding the bias in the results. This variability highlights the ne-
cessity for caution when interpreting feature importances derived from 
these models, as they may not accurately reflect the underlying re-
lationships within the data.

To establish genuine relationships between the target variable and its 
features, Han and Lin should consider three fundamental components: 
data distribution, statistical relationships between variables, and sta-
tistical validation through p-values. Understanding the data distribution 
is crucial, as it influences the appropriateness of the modeling tech-
niques employed; neglecting to consider nonlinear relationships—which 
may arise from various arithmetical operations on the initial physical 
quantities—can obscure meaningful patterns in the data. Additionally, 
exploring the statistical interactions between the target and predictor 
variables is essential, as employing methodologies that can capture 
these complexities—such as nonparametric approaches—could yield a 
more accurate representation of the relationships present in the data. 
Lastly, incorporating statistical validation techniques, such as hypoth-
esis testing and p-value analysis, is necessary to substantiate claims 
regarding feature importance and ensure that observed relationships are 
not artifacts of random variation.
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Rather than relying on linear models like LASSO, we recommend 
utilizing nonlinear models such as random forests to effectively capture 
the nonlinear patterns present in the data for target prediction. To 
accurately assess the relationships between the target variable and 
features, as well as for feature selection, this paper advocates for the 
application of Spearman’s correlation [6,7] and Kendall’s tau [8,9], 
supplemented with p-values for statistical significance. Additionally, it 
is essential to conduct a Variance Inflation Factor (VIF) analysis prior to 
applying statistical methods to identify and eliminate features exhibiting 
collinearity and interaction effects, thereby mitigating feature inflation.

Instead of relying on the linear LASSO model for feature selection, 
this paper advocates for the use of bias-free, robust statistical methods, 
such as Spearman’s correlation with p-values [6,7] and Kendall’s tau 
with p-values [8,9], both of which are nonlinear and nonparametric 
approaches. These methods provide valuable insights into the relation-
ships between variables while accounting for the complexity inherent in 
chemical properties. The paper recommends that Han and Lin reevalu-
ate their analysis by incorporating these robust statistical techniques to 
ensure more reliable and valid outcomes. By focusing on true associa-
tions through these methods, they can enhance the integrity of their 
findings and provide a deeper understanding of the underlying re-
lationships in their data.

This paper acknowledges that the complexity and variability 
inherent in different domains and datasets make it challenging to 
establish a one-size-fits-all standard. However, we believe that creating 
a framework of best practices and guidelines is not only feasible but also 
essential. Such a framework can be tailored to accommodate specific 
industry needs while promoting consistency and reproducibility across 
studies.
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