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A B S T R A C T

This paper addresses critical concerns related to feature importance analysis in battery research, specifically 
examining the limitations of machine learning-derived feature importances as reported by Yuan et al. While 
recent studies have achieved impressive prediction accuracy in battery modeling, this paper underscores that 
such accuracy does not necessarily ensure the trustworthy interpretation of feature importances. This paper 
advocates for the adoption of robust statistical methods as a superior alternative to model-derived feature im-
portances, emphasizing three key advantages: the provision of directional information (ranging from -1 to +1), 
standardized comparison scales, and statistical validation through p-values. To enhance the reliability and 
interpretability of feature importance analysis, this paper introduces a comprehensive framework that in-
corporates five nonlinear, nonparametric statistical methods. This approach is designed to enhance the rigor and 
clarity of feature importance assessments in battery research and related fields.

Accurate analysis is essential for researchers to ensure error-free 
calculations. The choice of machine learning tools can lead to signifi-
cantly different outcomes, underscoring the importance of understand-
ing their limitations. Researchers must ascertain whether their 
calculations have ground truth values for validation. In the absence of 
ground truth, additional caution is necessary to achieve reliable results. 
This paper presents a detailed example illustrating the use of ground 
truth values in the context of feature importance and feature selection, 
highlighting the potential pitfalls of ignoring this crucial aspect in 
analytical processes. By emphasizing the importance of validation in 
feature analysis, this work seeks to promote more robust and trust-
worthy research practices.

Yuan et al. reviewed and investigated computational understanding 
and multiscale simulation of secondary batteries [1]. They employed 
linear, lasso, ridge, and elasticnet regression models to predict nanocage 
vcell, achieving an r² score of 0.99 and a root mean square error (rmse) 
below 0.05. Among these models, lasso regression achieved the highest 
prediction accuracy and effective feature selection, attributed to its L1 
regularization technique [1].

While Yuan et al. provide a pioneering review of computational 
models for secondary batteries, this paper highlights significant con-
cerns regarding their approach to feature selection and feature impor-
tance as derived from lasso regression. The model-specific nature of 
these analyses can lead to misleading conclusions, as different models 
can yield varying feature importances. It is crucial for Yuan et al. to 
grasp the fundamental theoretical principles of machine learning, 
particularly the distinction between target prediction accuracy and the 
reliability of feature importance.

In supervised machine learning, while ground truth values are 
available for validating prediction accuracy, the same cannot be said for 
feature importances. As a result, high target prediction accuracy does 
not necessarily imply that the derived feature importances are 

trustworthy. In essence, the accuracy of target predictions and the val-
idity of feature importance are separate issues. The lack of ground truth 
values in feature importance computations introduces inherent biases, 
potentially leading to flawed conclusions. Numerous peer-reviewed 
studies—over 100—have documented the presence of significant bia-
ses in feature importances generated by machine learning models, 
underscoring the need for caution in interpreting these results [2–7].

Feature importance, feature selection, and feature reduction tech-
niques lack ground truth values for validation, necessitating extra 
caution in their analysis. In statistics, when ground truth values are 
absent, three critical components must be considered: data distribution 
patterns, statistical relationships between variables, and validation 
through p-values for statistical significance.

This paper advocates for the adoption of nonlinear and nonpara-
metric robust statistical methods, including spearman’s correlation [8], 
kendall’s tau [9], goodman-kruskal gamma [10], somers’ d [11], and 
hoeffding’s d [12]. These five statistical methods offer distinct advan-
tages over model-derived feature importances due to their comprehen-
sive analytical capabilities.

A key distinction lies in how these methods and model-derived 
feature importances represent relationships. Model-derived feature im-
portances typically range from 0 to 1, where values closer to 1 indicate 
stronger influence or importance of a feature, but without indicating the 
direction of the relationship. In contrast, statistical methods provide 
three crucial pieces of information:

First, they provide directional information, offering crucial insights 
about the nature of relationships between variables. When a positive 
value is obtained, it indicates that variables move in the same direction, 
while negative values reveal inverse relationships between variables. 
This directional information is vital for understanding the underlying 
relationships in the data.

Second, these methods operate within a standardized range from − 1 
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to +1, where − 1 indicates a perfect negative correlation, 0 indicates no 
correlation, and +1 indicates a perfect positive correlation. This stan-
dardized scale enables direct comparison across different variables and 
methods, making the results more interpretable and comparable.

Third, these methods are accompanied by their respective p-values, 
which provide statistical validation of the results. P-values indicate the 
probability that the observed relationship occurred by chance, offering a 
quantitative measure of statistical significance. This statistical valida-
tion is crucial for ensuring the reliability of findings and helps re-
searchers distinguish meaningful relationships from random 
fluctuations in the data.

The combination of directional information, standardized range, and 
statistical validation through p-values makes these methods particularly 
valuable for robust data analysis, offering advantages that model- 
derived feature importances typically cannot provide.

To further advance this work, future studies should explore hybrid 
modeling approaches that combine advanced machine learning tech-
niques with domain-specific knowledge to achieve both high general-
ization and high precision under the constraints of limited battery 
parameters. Furthermore, integrating robust nonlinear and nonpara-
metric strategies is critical not only for capturing the complex dynamics 
of battery degradation but also for accurately predicting the state of 
health (soh) of lithium batteries across diverse chemical systems. Such 
approaches would facilitate the development of early warning systems 
capable of detecting potential hazards, thereby enhancing the safety and 
reliability of battery operation in real-world applications.

In addition, it is important to note that the feature extraction pro-
cesses for laboratory data and field data can differ significantly due to 
their distinct aging mechanisms. Laboratory data, collected under 
controlled experimental conditions, often display predictable and ho-
mogeneous degradation patterns, allowing for more straightforward 
feature extraction and analysis. In contrast, field data are subject to a 
wide range of operational stresses, environmental influences, and un-
monitored variables, which result in more complex and heterogeneous 
aging behaviors. Therefore, adapting or developing feature extraction 
methods that specifically address the noise and variability inherent in 
field data is essential to ensure accurate modeling and reliable predic-
tion of battery performance in real-world scenarios.
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