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ARTICLE INFO ABSTRACT

Keywords: Tao et al. demonstrate an XGBoost-SHAP framework that predicts trihalomethanes (THMs) with high accuracy
THMs (R? = 0.9506; RMSE = 0.5340 pg/L) and elevates CODMn, TDS, and FCR as dominant drivers. While powerful for
XGBoost real-time monitoring, supervised feature attributions can be fragile—susceptible to collinearity, proxies, distri-
zljil;tency butional shifts, and confounding—yielding overconfident mechanistic claims despite strong target-prediction

Dose-response

accuracy. We argue that trustworthy inference requires independent validation emphasizing two pillars: con-

sistency across studies, settings, and populations, and clear dose-response relationships. We outline a comple-
mentary workflow: unsupervised exploration (feature agglomeration, HVGS), nonparametric associations paired
with explicit dose-response tests, and systematic perturbation with resampling and cross-site/temporal valida-
tion. Integrating these steps with supervised modeling can stabilize interpretations and advance reliable,
actionable insights on THM formation.

Tao et al. introduced an XGBoost-SHAP framework that accurately
predicts trihalomethanes (THMs) in drinking water while illuminating a
three-stage regulatory mechanism [1]. Their XGBoost model delivered
strong predictive performance (R* = 0.9506; RMSE = 0.5340 pg/L), and
SHAP analyses highlighted the permanganate index (CODMn), total
dissolved solids (TDS), and free chlorine residual (FCR) as the dominant
drivers of THM formation. This work exemplifies how combining
gradient-boosted trees with explainable AI can enhance real-time
monitoring and guide targeted mitigation strategies in distribution
systems [1].

However, this paper underscores the pitfalls of leaning solely on
XGBoost-SHAP feature importances from a supervised model. Without
independent validation, these attributions can be skewed by collin-
earity, proxy variables, distributional shifts, or hidden confounders,
leading to overconfident or incorrect mechanistic claims. Put plainly,
feature importances derived from supervised models are inherently
fragile and prone to misinterpretation when taken at face value [2-10].
Over 300 peer-reviewed articles have documented non-negligible biases
in feature importances derived from supervised models. The Journal of
Environmental Chemical Engineering has already published ninety-five
SHAP-related articles (seventy-nine in 2025 alone), reflecting rapid
adoption of model interpretation tools and the urgent need for stronger
validation protocols.

Supervised learning produces two distinct forms of accuracy: target-
prediction accuracy, which can be directly benchmarked against
observed labels (e.g., R? and RMSE), and feature-importance accuracy,
for which no ground-truth reference exists. As a result, different algo-
rithms or even repeated runs of the same algorithm under minor data
perturbations can yield inconsistent importance rankings despite com-
parable predictive performance. In short, high target-prediction accu-
racy does not guarantee trustworthy feature importances [11-18].
Because SHAP explains the trained model as-is, it will faithfully
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propagate any biases or instabilities already present, potentially
misleading researchers if explanations are interpreted as causal or
mechanistic evidence [19-28].

To assess true associations, two key elements must be met: consis-
tency and dose-response relationships [29-38]. Consistency means that
an association is replicated across different studies, settings, and pop-
ulations. Dose-response means systematic changes in the outcome with
varying levels of exposure. To reduce related risks, we recommend a
multifaceted workflow that goes beyond supervised feature attributions.
First, unsupervised exploratory analyses such as feature agglomeration
and highly variable gene selection (HVGS) can reveal stable clusters or
latent structures without referencing the target, supporting consistency
across subsets, resamples, sites, and time periods. Second, non-targeted,
nonlinear nonparametric association measures (e.g., Spearman’s rank
correlation with p-values) should be paired with explicit dose-response
assessments (e.g., monotonic trend tests, spline-based partial depen-
dence, and stratified analyses) to confirm that relationships are consis-
tent across strata and exhibit plausible monotonic or threshold-like
dose-response  behavior. Third, systematic perturbation and
leave-one-out validation should be routine: remove the top-ranked
feature, re-rank the remaining predictors, and assess the stability of
their ordering to gauge robustness, complemented by bootstrapped
resampling and cross-site or temporal validation to test consistency. By
integrating these complementary strategies with supervised modeling,
studies of THM formation can produce more reliable, consistent insights
and avoid artifacts introduced by the learning algorithm while sub-
stantiating true dose-response relationships.
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