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Tao et al. demonstrate an XGBoost–SHAP framework that predicts trihalomethanes (THMs) with high accuracy 
(R² = 0.9506; RMSE = 0.5340 μg/L) and elevates CODMn, TDS, and FCR as dominant drivers. While powerful for 
real-time monitoring, supervised feature attributions can be fragile—susceptible to collinearity, proxies, distri
butional shifts, and confounding—yielding overconfident mechanistic claims despite strong target-prediction 
accuracy. We argue that trustworthy inference requires independent validation emphasizing two pillars: con
sistency across studies, settings, and populations, and clear dose–response relationships. We outline a comple
mentary workflow: unsupervised exploration (feature agglomeration, HVGS), nonparametric associations paired 
with explicit dose–response tests, and systematic perturbation with resampling and cross-site/temporal valida
tion. Integrating these steps with supervised modeling can stabilize interpretations and advance reliable, 
actionable insights on THM formation.

Tao et al. introduced an XGBoost–SHAP framework that accurately 
predicts trihalomethanes (THMs) in drinking water while illuminating a 
three-stage regulatory mechanism [1]. Their XGBoost model delivered 
strong predictive performance (R² = 0.9506; RMSE = 0.5340 μg/L), and 
SHAP analyses highlighted the permanganate index (CODMn), total 
dissolved solids (TDS), and free chlorine residual (FCR) as the dominant 
drivers of THM formation. This work exemplifies how combining 
gradient-boosted trees with explainable AI can enhance real-time 
monitoring and guide targeted mitigation strategies in distribution 
systems [1].

However, this paper underscores the pitfalls of leaning solely on 
XGBoost–SHAP feature importances from a supervised model. Without 
independent validation, these attributions can be skewed by collin
earity, proxy variables, distributional shifts, or hidden confounders, 
leading to overconfident or incorrect mechanistic claims. Put plainly, 
feature importances derived from supervised models are inherently 
fragile and prone to misinterpretation when taken at face value [2–10]. 
Over 300 peer-reviewed articles have documented non-negligible biases 
in feature importances derived from supervised models. The Journal of 
Environmental Chemical Engineering has already published ninety-five 
SHAP-related articles (seventy-nine in 2025 alone), reflecting rapid 
adoption of model interpretation tools and the urgent need for stronger 
validation protocols.

Supervised learning produces two distinct forms of accuracy: target- 
prediction accuracy, which can be directly benchmarked against 
observed labels (e.g., R² and RMSE), and feature-importance accuracy, 
for which no ground-truth reference exists. As a result, different algo
rithms or even repeated runs of the same algorithm under minor data 
perturbations can yield inconsistent importance rankings despite com
parable predictive performance. In short, high target-prediction accu
racy does not guarantee trustworthy feature importances [11–18]. 
Because SHAP explains the trained model as-is, it will faithfully 

propagate any biases or instabilities already present, potentially 
misleading researchers if explanations are interpreted as causal or 
mechanistic evidence [19–28].

To assess true associations, two key elements must be met: consis
tency and dose-response relationships [29–38]. Consistency means that 
an association is replicated across different studies, settings, and pop
ulations. Dose-response means systematic changes in the outcome with 
varying levels of exposure. To reduce related risks, we recommend a 
multifaceted workflow that goes beyond supervised feature attributions. 
First, unsupervised exploratory analyses such as feature agglomeration 
and highly variable gene selection (HVGS) can reveal stable clusters or 
latent structures without referencing the target, supporting consistency 
across subsets, resamples, sites, and time periods. Second, non-targeted, 
nonlinear nonparametric association measures (e.g., Spearman’s rank 
correlation with p-values) should be paired with explicit dose-response 
assessments (e.g., monotonic trend tests, spline-based partial depen
dence, and stratified analyses) to confirm that relationships are consis
tent across strata and exhibit plausible monotonic or threshold-like 
dose-response behavior. Third, systematic perturbation and 
leave-one-out validation should be routine: remove the top-ranked 
feature, re-rank the remaining predictors, and assess the stability of 
their ordering to gauge robustness, complemented by bootstrapped 
resampling and cross-site or temporal validation to test consistency. By 
integrating these complementary strategies with supervised modeling, 
studies of THM formation can produce more reliable, consistent insights 
and avoid artifacts introduced by the learning algorithm while sub
stantiating true dose-response relationships.
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