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Beyond accuracy: Stabilizing feature importance in GWRF/RF for soil heavy metal mapping☆
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A B S T R A C T

Qin et al. (2025) integrate geographically weighted random forest with multi-source environmental covariates to 
map soil heavy metals, showing that optimal bandwidth selection and fusion of local GWRF with global RF 
markedly improve predictive accuracy. Using mean decrease in impurity and SHAP, they identify O3, topog
raphy, mining proximity, and rainfall as dominant predictors. However, feature importance lacks ground-truth 
validation, and rankings are model-dependent, risking misleading interpretation despite strong target predic
tion. Because SHAP explanations inherit supervised-model biases, interpretability cannot be inferred from ac
curacy. We recommend rank-stability auditing and label-agnostic validation: generate independent rankings (e. 
g., feature agglomeration, highly variable feature selection, Spearman’s ρ), then perform a leave-one-out rank- 
stability test to assess order robustness. Transparent reporting of ranking instability should accompany predictive 
metrics.

Qin et al. (2025) conducted a comprehensive investigation using 
geographically weighted random forest (GWRF) to integrate 
multi-source environmental covariates for spatial prediction of soil 
heavy metals. Their research meticulously examined how varying 
bandwidth and weight parameters influence GWRF performance. The 
findings demonstrated that carefully selecting appropriate bandwidth 
parameters and strategically integrating local GWRF and global RF 
model results can significantly enhance prediction accuracy for soil 
heavy metal distribution mapping. They employed interpretable ma
chine learning approaches, specifically Mean Decrease in Impurity 
(MDI) and Shapley Additive exPlanations (SHAP), to identify key envi
ronmental factors influencing soil heavy metal concentrations. These 
analyses revealed that air quality parameters (particularly O3 levels), 
topographic features, proximity to mining operations, and rainfall pat
terns emerged as the most significant predictors in their model frame
work (Qin et al., 2025).

It is essential to recognize that supervised models like GWRF and RF 
exhibit two distinct types of accuracy: target prediction accuracy and 
feature importance accuracy. While target prediction accuracy can be 
rigorously validated against ground truth measurements using labels, 
feature importance calculations lack corresponding validation bench
marks. This critical distinction was not adequately addressed by Qin 
et al. Due to this absence of ground truth for feature importance vali
dation, they demonstrated that different models inevitably generate 
varying feature importance rankings, reflecting model-specific charac
teristics rather than objective reality, which can lead to potentially 
misleading interpretations. In other words, feature importances derived 
from supervised models are inherently skewed (Fisher et al., 2019; 
Steiner & Kim, 2016; Nalenz et al., 2024; Nazer et al., 2023; Ugir
umurera et al., 2024; Alaimo Di Loro et al., 2023; Adler & Painsky, 2022; 
Dunne et al., 2023; Strobl et al., 2007; Wallace et al., 2023).

Furthermore, the Qin et al.’s implementation of SHAP for model 
explanation (explain = SHAP(model)) inherently bases interpretations 
solely on the underlying supervised model. This approach means that 
SHAP necessarily inherits—and may amplify—any biases present in the 
original model’s feature importance calculations (Wu, 2025; Bilodeau 
et al., 2024; Huang & Marques-Silva, 2024; Kumar et al., 2021; 
Hooshyar & Yang, 2024; Lones, 2024; Molnar et al., 2022; Létoffé et al., 
2025; Ponce-Bobadilla et al., 2024; Coupland et al., 2025). While SHAP 
itself offers robust explanation capabilities, its reliability ultimately 
depends on the quality of the feature importance signals from the su
pervised model. This dependency creates a critical limitation: even 
when a model achieves high prediction accuracy, its explanatory out
puts may still lack validity, as predictive performance and interpret
ability represent fundamentally distinct dimensions of model 
evaluation. This distinction highlights the need for separate validation 
protocols for explanatory mechanisms beyond traditional predictive 
metrics.

Because feature-importance ranking orders, not merely the magni
tude of individual scores, dictate which environmental covariates are 
labeled “most influential,” Qin et al. must rigorously challenge the sta
bility of those orders. We therefore recommend augmenting their 
GWRF/RF framework with label-agnostic strategies (e.g., feature 
agglomeration, highly variable gene selection) and non-target-driven 
metrics (such as Spearman’s ρ) to generate independent ranking lists. 
They should then apply a simple leave-one-out rank-stability test: first, 
rank all covariates and select the top n among full features; next, remove 
the highest-ranked covariate and re-rank the remainder to identify the 
new top n-1; and finally, compare feature importance ranking orders 
between the original versus reduced lists. Large discrepancies in these 
ranking orders will expose the fragility of supervised feature rankings, 
warning against overinterpreting model-specific drivers and 
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underscoring the imperative to validate and transparently report feature 
importance ordering.
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