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markedly improve predictive accuracy. Using mean decrease in impurity and SHAP, they identify O3, topog-
raphy, mining proximity, and rainfall as dominant predictors. However, feature importance lacks ground-truth
validation, and rankings are model-dependent, risking misleading interpretation despite strong target predic-

tion. Because SHAP explanations inherit supervised-model biases, interpretability cannot be inferred from ac-
curacy. We recommend rank-stability auditing and label-agnostic validation: generate independent rankings (e.
g., feature agglomeration, highly variable feature selection, Spearman’s p), then perform a leave-one-out rank-
stability test to assess order robustness. Transparent reporting of ranking instability should accompany predictive

metrics.

Qin et al. (2025) conducted a comprehensive investigation using
geographically weighted random forest (GWRF) to integrate
multi-source environmental covariates for spatial prediction of soil
heavy metals. Their research meticulously examined how varying
bandwidth and weight parameters influence GWRF performance. The
findings demonstrated that carefully selecting appropriate bandwidth
parameters and strategically integrating local GWRF and global RF
model results can significantly enhance prediction accuracy for soil
heavy metal distribution mapping. They employed interpretable ma-
chine learning approaches, specifically Mean Decrease in Impurity
(MDI) and Shapley Additive exPlanations (SHAP), to identify key envi-
ronmental factors influencing soil heavy metal concentrations. These
analyses revealed that air quality parameters (particularly O3 levels),
topographic features, proximity to mining operations, and rainfall pat-
terns emerged as the most significant predictors in their model frame-
work (Qin et al., 2025).

It is essential to recognize that supervised models like GWRF and RF
exhibit two distinct types of accuracy: target prediction accuracy and
feature importance accuracy. While target prediction accuracy can be
rigorously validated against ground truth measurements using labels,
feature importance calculations lack corresponding validation bench-
marks. This critical distinction was not adequately addressed by Qin
et al. Due to this absence of ground truth for feature importance vali-
dation, they demonstrated that different models inevitably generate
varying feature importance rankings, reflecting model-specific charac-
teristics rather than objective reality, which can lead to potentially
misleading interpretations. In other words, feature importances derived
from supervised models are inherently skewed (Fisher et al., 2019;
Steiner & Kim, 2016; Nalenz et al., 2024; Nazer et al., 2023; Ugir-
umurera et al., 2024; Alaimo Di Loro et al., 2023; Adler & Painsky, 2022;
Dunne et al., 2023; Strobl et al., 2007; Wallace et al., 2023).

Furthermore, the Qin et al.’s implementation of SHAP for model
explanation (explain = SHAP(model)) inherently bases interpretations
solely on the underlying supervised model. This approach means that
SHAP necessarily inherits—and may amplify—any biases present in the
original model’s feature importance calculations (Wu, 2025; Bilodeau
et al.,, 2024; Huang & Marques-Silva, 2024; Kumar et al., 2021;
Hooshyar & Yang, 2024; Lones, 2024; Molnar et al., 2022; Létoffé et al.,
2025; Ponce-Bobadilla et al., 2024; Coupland et al., 2025). While SHAP
itself offers robust explanation capabilities, its reliability ultimately
depends on the quality of the feature importance signals from the su-
pervised model. This dependency creates a critical limitation: even
when a model achieves high prediction accuracy, its explanatory out-
puts may still lack validity, as predictive performance and interpret-
ability represent fundamentally distinct dimensions of model
evaluation. This distinction highlights the need for separate validation
protocols for explanatory mechanisms beyond traditional predictive
metrics.

Because feature-importance ranking orders, not merely the magni-
tude of individual scores, dictate which environmental covariates are
labeled “most influential,” Qin et al. must rigorously challenge the sta-
bility of those orders. We therefore recommend augmenting their
GWRF/RF framework with label-agnostic strategies (e.g., feature
agglomeration, highly variable gene selection) and non-target-driven
metrics (such as Spearman’s p) to generate independent ranking lists.
They should then apply a simple leave-one-out rank-stability test: first,
rank all covariates and select the top n among full features; next, remove
the highest-ranked covariate and re-rank the remainder to identify the
new top n-1; and finally, compare feature importance ranking orders
between the original versus reduced lists. Large discrepancies in these
ranking orders will expose the fragility of supervised feature rankings,
warning against overinterpreting model-specific drivers and
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underscoring the imperative to validate and transparently report feature
importance ordering.
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