
Beyond predictive accuracy: interpreting feature importances
in pulmonary endarterectomy risk models with total
correlation analysis

To the Editor:

LILEY et al. [1] developed and internally validated an open-source risk-assessment tool for pulmonary
endarterectomy by comparing three modelling approaches: ordinary linear regression, penalised linear
regression and random forest. For each surgical outcome, models were calibrated, fitted and evaluated via
k-fold cross-validation to ensure robustness. Across all end-points, the random forest models delivered the
highest predictive accuracy and highlighted the key clinical and haemodynamic predictors of perioperative
risk in chronic thromboembolic pulmonary hypertension [1].

However, despite demonstrating excellent predictive performance, relying on conventional machine
learning-derived feature importances carries substantial interpretative risks. Unlike prediction accuracy,
which can be directly measured against known outcomes, importance scores from different algorithms have
no external “ground truth” for validation. Ordinary linear regression ranks features by coefficient
magnitude, penalised regression shrinks some coefficients toward zero, and random forests use metrics
such as split frequency or impurity reduction. Because each method embodies its own bias and heuristics,
they often produce conflicting importance rankings that may reflect idiosyncrasies of the model rather than
true underlying relationships [2–5].

Both ordinary and penalised linear regressions impose a fixed, additive functional form: each outcome is
modelled as a linear combination of predictors, and the only flexibility comes from shrinking coefficients
toward zero. In contrast, biological and haemodynamic data frequently violate these assumptions,
exhibiting threshold effects, saturations and intricate synergies among variables. When you fit a strictly
linear, parametric model to such nonparametric, nonlinear relationships, the result is systematic
under-fitting: true signal is smoothed over, variance is misallocated, and coefficient estimates become
distorted. In practice, this mis-specification not only diminishes predictive fidelity but also produces
misleading feature rankings, overemphasising variables that happen to align with the imposed linear
structure, while hiding those that drive risk through more complex, nonlinear pathways.

Extensive evidence – spanning more than 100 peer-reviewed studies – shows that algorithm-specific
feature-importance measures often mislead: they can exaggerate the contribution of highly correlated
covariates, ignore subtler but synergistic predictors, mistake spurious associations for causal drivers, and
fail to detect variables whose effects emerge only through complex, higher-order interactions. While LILEY

et al. [1] acknowledge the power of machine learning to deliver high predictive accuracy, they caution that
model-derived importance scores lack an external “ground truth” and thus should not be taken at face
value. Instead, such metrics must be interpreted with great care – or better yet, validated against
independent, nonparametric approaches – before being used to inform clinical decisions or infer underlying
pathophysiology.

To overcome these limitations, this paper advocates augmenting their modelling framework with a
nonlinear, nonparametric information-theoretic approach – total correlation (TC) analysis – for uncovering
complex interactions and nonmonotonic patterns. “Complex interactions” occur when the combined effect
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of two or more predictors differs from the sum of their individual effects, for example, when a
haemodynamic measurement only increases surgical risk above a critical threshold of exercise capacity.
“Nonmonotonic patterns” arise when a predictor’s association with the outcome changes direction across
its range, such as a U-shaped relationship between mean pulmonary arterial pressure and postoperative
complications. Traditional regression models assume linear (or simple penalised) relationships and thus
struggle to accommodate threshold or bidirectional effects, while random forests, though flexible, partition
the predictor space via axis-aligned splits and can miss subtle, higher-order dependencies. In contrast, TC
quantifies the total shared information among any set of variables without presuming linearity or additivity,
enabling simultaneous detection of synergy, redundancy and higher-order interactions that drive
perioperative risk in chronic thromboembolic pulmonary hypertension.

To assist researchers in dissecting these intricate dependencies, clinical data analysis tools such as
multivariate mutual information (MI) and its advanced extension, TC, have proven invaluable [6–10]. MI
measures the shared information between multiple variables with nonmonotonic patterns and the outcome,
capturing nonlinear and nonadditive dependencies. However, MI alone cannot distinguish whether this
information arises from redundant signals, where different predictors convey overlapping content, or from
synergistic effects that only emerge when variables act jointly. TC, also known as multi-information,
extends MI by quantifying the total correlation within a predictor set and decomposing it into redundancy
and synergy. By first using MI to flag variable groups exhibiting nonmonotonic associations and then
applying TC to unravel their internal information structure, investigators can detect complex, higher-order
interactions that linear regressions and axis-aligned tree splits typically miss.
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