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A B S T R A C T

Background: Zheng et al. (2025) provided a comprehensive review of advancements in electronic noses used for 
detecting alcoholic beverages. Their work highlights the critical role of Principal Component Analysis (PCA) in 
feature reduction, which enhances the accuracy of various analytical methods such as linear discriminant 
analysis (LDA), random forest (RF), convolutional neural networks (CNN), and back propagation neural net
works (BPNN). While PCA is a widely used technique, its application in electronic nose technologies necessitates 
a closer examination of its limitations.
Scope and approach: This paper critically evaluates the limitations of PCA when applied to nonlinear and 
nonparametric data, emphasizing the potential for distorted conclusions that can arise from its use. Through an 
extensive literature review, the paper discusses the implications of PCA within electronic nose applications. Key 
areas of focus include the importance of assessing data distribution, understanding statistical relationships, and 
validating significance using p-values. Additionally, the paper advocates for the adoption of nonparametric 
statistical methods, such as Spearman’s correlation and Kendall’s tau, to enhance the reliability of the analyses 
conducted.
Key findings and conclusion: The review reveals that the linear assumptions underlying PCA may misrepresent 
variance in nonlinear datasets, leading to misleading projections that obscure structural information. PCA’s focus 
on global patterns can also overlook significant local variations, potentially causing overlaps among distinct 
classes within high-dimensional data. These limitations necessitate caution when utilizing PCA in electronic nose 
technologies. Therefore, to ensure valid and reliable results in this rapidly advancing field, it is essential to adopt 
robust statistical methods and conduct thorough preliminary analyses that account for the specific characteristics 
of the data. Mitigating the risks of distorted conclusions will improve the accuracy and credibility of findings in 
this area of research.
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Zheng et al. (2025) conducted a comprehensive review of the prin

ciples and advancements in electronic noses for detecting alcoholic 
beverages. They highlighted the importance of principal component 
analysis (PCA) as a key technique for feature reduction, which stream
lines data before applying methods such as linear discriminant analysis 
(LDA), random forest (RF), convolutional neural networks (CNN), and 
back propagation neural networks (BPNN). By effectively employing 
PCA, the functionality and accuracy of these analytical approaches are 
significantly enhanced, contributing to improved performance in elec
tronic nose applications.

However, while Zheng et al. presented innovative insights into 
recent progress in electronic nose technologies, this paper raises critical 
concerns regarding the potential limitations of using PCA for feature 
reduction. Specifically, it addresses the issues that arise when relying on 
linear and parametric approaches to analyze nonlinear and nonpara
metric data, which can ultimately lead to distorted conclusions (Chen, 
2023; Tian, 2024). Recognizing these challenges is essential for ensuring 
the reliability and validity of results in this evolving field.

Principal Component Analysis (PCA) is a widely used technique for 
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feature reduction; however, its application to nonlinear or nonpara
metric data often results in distortions due to several inherent limita
tions (Chen, 2023; Tian, 2024). Primarily, PCA operates as a linear 
method, based on the assumption that relationships within the data can 
be effectively captured through linear equations (Pongpiachan et al., 
2024). This assumption presents challenges when the underlying 
structure of the data is nonlinear, as PCA may struggle to accurately 
represent variance, ultimately leading to misleading projections. For 
instance, in datasets characterized by circular distributions, PCA at
tempts to fit a linear line, which can significantly obscure critical in
formation regarding the data’s structure.

Furthermore, PCA focuses on capturing global patterns by maxi
mizing variance across the entire dataset while neglecting local varia
tions that are often crucial for understanding intrinsic patterns. As a 
result, when applied to datasets with significant local structures, PCA 
can distort these relationships by overlooking them entirely. Addition
ally, the projection process in PCA can cause overlaps between points 
from different classes or clusters in high-dimensional space, obscuring 
their distinct identities.

While traditional machine learning methods may rely on ground 
truth values for accuracy validation, feature reduction techniques like 
PCA lack such benchmarks for assessing the accuracy of feature 
importance. This absence of ground truth introduces inherent distor
tions in the feature reduction process. To accurately capture true asso
ciations between variables, three key components should be carefully 
considered: data distribution, the statistical relationship between vari
ables, and the validation of statistical significance via p-values. This 
paper advocates for the adoption of robust, bias-free statistical methods 
(Okoye & Hosseini, 2024), including nonparametric techniques such as 
Spearman’s correlation (Yu & Hutson, 2024) and Kendall’s tau (Chen, 
2022), both supplemented with p-values. These methods offer advan
tages in handling non-normal data distributions and can provide more 
reliable insights into variable relationships. However, before applying 
these statistical methods, it is crucial to conduct a Variance Inflation 
Factor (VIF) analysis to eliminate collinearity and interaction effects 
among features, thus preventing inflation in feature importance as
sessments (Salmerón-Gómez, 2024).

Feature reduction offers numerous benefits for researchers, including 
the reduction of computational complexity, minimization of overfitting, 
and enhanced interpretability of data. Additionally, it can lead to 
improved model performance by eliminating irrelevant or redundant 
features, accelerating training times, and facilitating easier visualization 
of high-dimensional data. By focusing on the most significant features, 
researchers can also gain deeper insights into the underlying patterns 
within their datasets, ultimately leading to more robust and generaliz
able models.

In the context of high-dimensional data, such as multi-omics data
sets, PCA is often employed as a preprocessing step to mitigate the "curse 
of dimensionality." HoweverZheng et al. should acknowledge that the 
linearity assumption inherent in PCA can lead to the unintended 
exclusion of significant nonlinear relationships among features. This 
may result in a loss of valuable information when translating into in
sights regarding the underlying biological processes.

The paper will incorporate a critical discussion addressing this issue, 
emphasizing that while PCA can provide benefits in dimensionality 
reduction, it may not always be the most suitable choice for preserving 
meaningful relationships in nonlinear contexts. Furthermore, Zheng 
et al. will explore alternative feature selection methods that may better 
retain important non-linear characteristics, ensuring a more compre
hensive analysis of the data.

It is frequently noted that the End-To-End approach is particularly 
effective in deep learning, as it allows for automatic feature extraction 
(Talaei Khoei, 2023; Mohd Noor, 2024). In such cases, utilizing the raw 
input data is often preferable to pre-processing the input values. This 
further supports the argument against the need to linearize data prior to 

its use in nonlinear models. Relevant references are provided below.
In conclusion, while Zheng et al. (2025) commendably highlight 

Principal Component Analysis (PCA) as a crucial tool for feature 
reduction in electronic noses, significant limitations must be acknowl
edged. PCA’s linearity assumes that data relationships can be adequately 
captured through linear equations, which can distort analyses when 
applied to nonlinear or nonparametric datasets. This misrepresentation 
of variance can obscure essential local structures and lead to misleading 
conclusions. To enhance the reliability and validity of results in elec
tronic nose applications, it is imperative to employ robust, bias-free 
statistical methods, such as nonparametric techniques including Spear
man’s correlation and Kendall’s tau. Additionally, a thorough variance 
inflation factor analysis should precede these methods to mitigate 
collinearity and interaction effects, ensuring accurate assessment of 
feature importance and preserving the integrity of analytical findings in 
this advancing field.

Funding

This research has no fund.

Conflicts of interest/competing interests

The author has no conflict of interest.

Data availability

No data was used for the research described in the article.

References

Chen, S., Ghadami, A., & Epureanu, B. I. (2022). Practical guide to using Kendall’s τ in 
the context of forecasting critical transitions. Royal Society Open Science, 9(7), Article 
211346. https://doi.org/10.1098/rsos.211346

Chen, X., Yi, L., & Liu, R. (2023). FEDA: A nonlinear subspace projection approach for 
electronic nose data classification. IEEE Transactions on Instrumentation and Mea
surement, 72, 1–11. https://doi.org/10.1109/TIM.2022.3224521

Mohd Noor, M. H., & Ige, A. O. (2024). A survey on state-of-the-art deep learning ap
plications and challenges. arXiv. https://doi.org/10.48550/arXiv.2403.17561

Okoye, K., & Hosseini, S. (2024). Correlation Tests in R: Pearson cor, Kendall’s tau, and 
Spearman’s Rho. In R programming. Singapore: Springer. https://doi.org/10.1007/ 
978-981-97-3385-9_12. 

Pongpiachan, S., Wang, Q., Apiratikul, R., Tipmanee, D., Li, L., Xing, L., Mao, X., Li, G., 
Han, Y., Cao, J., Surapipith, V., Aekakkararungroj, A., & Poshyachinda, S. (2024). 
Combined use of principal component analysis/multiple linear regression analysis 
and artificial neural network to assess the impact of meteorological parameters on 
fluctuation of selected PM2.5-bound elements. PLoS One, 19(3), Article e0287187. 
https://doi.org/10.1371/journal.pone.0287187
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