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Mitigating feature importance bias in regression
models for clinical decision-making
TO THE EDITORS: Brennand et al proposed a novel
approach allowing patients to choose between uterine-
preserving surgery and hysterectomy for pelvic organ pro-
lapse.1 They utilized inverse probability of treatment
weighting in linear regression and modified Poisson regres-
sion to estimate adjusted mean differences and relative risks,
respectively. A logistic regression algorithm helped identify
and prioritize covariates based on their associations with
treatment exposure and outcomes.1

However, concerns arise regarding logistic regression’s
use for generating feature importance metrics for covariate
selection due to significant biases.2,3 This paper emphasizes
that feature importance derived from such models can lead
to misleading conclusions due to inherent biases. This
paper advocates for robust statistical methods,4 such as chi-
squared tests and Spearman’s correlation, to accurately
identify true associations between targets and features. By
emphasizing reliable statistical approaches, their study seeks
to strengthen the validity of its findings and facilitate
informed treatment decisions. In essence, researchers
should prioritize true associations over biased feature im-
portances in their studies.

Linear and logistic regression are common statistical tools
in machine learning and data analysis for understanding
variable relationships and making predictions. Both methods
can introduce biases in determining feature importance due
to their handling of variables.2,3 Linear regression predicts a
continuous output via a linear combination of input features.
Feature importance is inherently assessed through model
coefficients, which can misrepresent relationships—especially
with nonlinear interactions or when multicollinearity ob-
scures individual contributions among correlated features.

In contrast, logistic regression, used for binary classifica-
tion, calculates the probability of a binary outcome based on
features. Like linear regression, it typically derives feature
importance from coefficients but suffers from class imbalance
and independence assumptions. Overrepresentation of one
class can skew importance toward predictive features of the
majority class, overshadowing those relevant to minorities.
High feature correlation can further dilute accurate attribu-
tion of importance among predictors.

Despite offering valuable insights, users must interpret
feature importance derived from these models cautiously.
Assumptions about relationships, multicollinearity, and class
imbalance can distort the perceived significance of features.
Researchers should clearly understand the distinctions
among machine learning prediction and feature importance
calculations. Although machine learning primarily aims for
accurate predictions, feature importances derived from these
models consistently reflect model-specific biases rather than
true associations. This paper advocates focusing on genuine
relationships to enhance the validity of findings, promoting a
nuanced understanding of influencing factors. By doing so,
researchers can improve the reliability of predictions and
inform better decision-making across various applications.
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