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Beyond XGBoost and SHAP: Unveiling true feature importance

Yoshiyasu Takefuji 1

Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• XGBoost may induce biased feature im
portances due to model specific nature.

• SHAP values may inflate feature impor
tance scores due to model biases.

• Absence of ground truth complicates 
feature importance validation efforts.

• Robust statistical methods help improve 
reliability of machine learning analyses.

• Understanding biases is crucial for ac
curate interpretations in research.
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A B S T R A C T

This paper outlines key machine learning principles, focusing on the use of XGBoost and SHAP values to assist 
researchers in avoiding analytical pitfalls. XGBoost builds models by incrementally adding decision trees, each 
addressing the errors of the previous one, which can result in inflated feature importance scores due to the 
method’s emphasis on misclassified examples. While SHAP values provide a theoretically robust way to interpret 
predictions, their dependence on model structure and feature interactions can introduce biases. The lack of 
ground truth values complicates model evaluation, as biased feature importance can obscure real relationships 
with target variables. Ground truth values, representing the actual labels used in model training and validation, 
are crucial for improving predictive accuracy, serving as benchmarks for comparing model outcomes to true 
results. However, they do not ensure real associations between features and targets. Instead, they help gauge the 
model’s effectiveness in achieving high accuracy. This paper underscores the necessity for researchers to 
recognize biases in feature importance and model evaluation, advocating for the use of rigorous statistical 
methods to enhance the reliability of analyses in machine learning research.

This paper outlines the fundamental principles of machine learning 
and illustrates the application of XGBoost in conjunction with SHAP 
values, providing researchers with essential tools to navigate common 
pitfalls in their analyses.

Many researchers, lacking a solid understanding of the fundamental 
principles of machine learning, often apply methodologies without fully 
grasping their implications. The primary goal of machine learning is to 
accurately predict target outcomes, and this is typically achieved 
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through supervised learning, which relies on ground truth values for 
validation. Within the realm of supervised machine learning, there are 
two main types: classification and regression.

Classification tasks involve predicting categorical outcomes, which 
are generally represented as discrete values, such as integers. Evaluation 
of classification accuracy includes metrics such as accuracy, sensitivity, 
specificity, and other validation metrics. On the other hand, regression 
focuses on predicting continuous real numbers. Instead of accuracy 
metrics, regression analysis utilizes performance metrics such as Mean 
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), R-squared, Adjusted R-squared, and Mean Absolute Per
centage Error (MAPE). These metrics quantify a model’s goodness of fit, 
indicating how well its predictions align with the observed data. It’s 
essential to recognize the distinction between these regression metrics 
and accuracy metrics used in classification tasks; while good fit often 
correlates with better accuracy, they serve different purposes.

In scenarios where ground truth values are unavailable, careful 
assessment of machine learning models becomes paramount to ensure 
accurate analysis. Here, the secondary goal of machine learning 
emerges: to calculate feature importances or uncover true associations 
between the target variable and the features. In unsupervised machine 
learning and clustering, there are no ground truth values available for 
validating accuracy, unlike in supervised machine learning, which relies 
on ground truth labels for performance assessment. The lack of ground 
truth values means that different models must employ distinct meth
odologies to calculate feature importance. As a result, feature impor
tance varies between models, emphasizing their inherent model-specific 
nature. This nuance suggests that feature importances may be biased 
due to these model-specific characteristics.

To mitigate such biases, various methods can be employed, although 
none can entirely eliminate all biases in feature importance evaluations. 
To accurately ascertain genuine relationships between the target and 
features, three critical considerations must be made: the data distribu
tion, the statistical relationships between variables, and the validity of 
those relationships as indicated by p-values. Given these complexities, 
this paper advocates for the adoption of bias-free robust statistical 
methods, such as Spearman’s correlation and Kendall’s tau, both of 
which are nonparametric and nonlinear approaches that incorporate p- 
values.

When discussing classification and regression, a key distinction lies 
in the type of output generated. While classification deals with cate
gorical outcomes, regression is focused on continuous values. As such, 
converting real numbers into integers while preserving their significant 
digits is important. Despite the absence of traditional accuracy analysis 
in regression, evaluating the predictive accuracy of these models re
mains crucial.

To this end, our paper introduces a novel approach that involves 
transforming regression tasks into classification problems, thereby 
enabling the application of accuracy analysis. By ranking real numbers 
or converting continuous values into categorical segments, researchers 
can more effectively examine model performance through familiar 
classification metrics. Regression deals with continuous target values, 
typically real numbers, while classification focuses on discrete outcomes 
represented by integers. Despite using similar algorithms, the key 
distinction lies in the interpretation of results, with careful attention 
needed to significant digits in both cases to ensure accuracy.

Understanding the distinctions between classification and regres
sion, along with the implications of feature importance and model- 
specific biases, is essential for leveraging machine learning effectively. 
By employing robust statistical methods and recognizing the potential 
pitfalls of feature importance calculations, researchers can enhance the 
reliability of their analyses and draw more informed conclusions.

While cross-validation, along with data splitting and shuffling, is 
effective for validating the accuracy of model predictions, it is not 
suitable for assessing the accuracy of feature importance. This distinc
tion is crucial, as the importance of a feature does not necessarily 

correlate with its predictive power in isolation. Cross-validation is a 
powerful technique for evaluating prediction accuracy; however, in 
time-series analysis that relies on historical data, special precautions 
must be taken when applying cross-validation.

In machine learning, the choice between linear or nonlinear models, 
as well as parametric or nonparametric analyses, is vital for ensuring 
accurate results. When dealing with nonlinear and nonparametric data, 
applying linear models or parametric analyses can lead to significant 
distortions in outcomes. For instance, Principal Component Analysis 
(PCA) is a widely used technique that operates under linear and para
metric assumptions. While PCA can effectively reduce dimensionality 
and identify key components of the data, it often falls short in capturing 
essential features in complex, real-world problems [1]. When PCA is 
used in the scikit-learn library, it is characterized as a linear and para
metric method. In contrast, when KernelPCA is employed, it is consid
ered a nonlinear and nonparametric technique.

This limitation occurs because PCA assumes linear relationships and 
may overlook non-linear interactions that are critical in identifying 
meaningful patterns within the data. As a result, relying solely on PCA 
can lead to an incomplete understanding of the underlying data struc
ture and potentially misinform subsequent analyses. While techniques 
like PCA have their place in data analysis, it is essential to choose 
appropriate modeling approaches that align with the nature of the data. 
This careful consideration will lead to more meaningful interpretations 
and better outcomes in machine learning applications.

Qin et al. developed models aimed at predicting the rate constants for 
bromine atoms and dibromine radicals [2]. To identify the optimal 
molecular fingerprints (MFs) for constructing quantitative 
structure-activity relationship (QSAR) models of the rate constants for 
reactive bromine species (RBS), they employed SHAP analysis to eval
uate how variations in the radius and length of the MFs affected model 
performance using the XGBoost algorithm [1]. However, their feature 
selection process with XGBoost was less than ideal, primarily due to 
significant inherent biases associated with the model’s specific nature.

It is essential for researchers, including Qin et al., to differentiate the 
predictive capabilities of machine learning models from the relation
ships between target variables and their features. Understanding this 
distinction enhances the interpretation of results and the applicability of 
feature importance analyses. While machine learning primarily focuses 
on accurately predicting target variables, feature importance metrics are 
intended to elucidate the associations between these targets and the 
input features. Nevertheless, models like XGBoost consistently introduce 
biases in feature importance, which can lead to misleading conclusions 
[3–6]. Researchers must acknowledge that, although machine learning 
is a powerful tool for prediction, the feature importances derived from 
these models do not necessarily reflect true associations, as they are 
shaped by the model’s inherent biases. Data reliability and the number 
of instances are essential for ensuring accurate training in machine 
learning models. The lack of ground truth values for evaluating feature 
importances leads to varying assessments across different models, 
resulting in inherently biased metrics. Over 100 peer-reviewed articles 
have documented the significant biases associated with feature impor
tances derived from these models. Many researchers face challenges in 
accurately assessing regression performance; converting regression 
problems into classification tasks can improve prediction accuracy.

In regression analysis, key assessment metrics include Mean Absolute 
Error (MAE), which measures average absolute differences; Mean 
Squared Error (MSE) and Root Mean Squared Error (RMSE), which focus 
on squared differences and their square root. R-squared indicates the 
variance explained by predictors, while Adjusted R-squared accounts for 
the number of predictors. Mean Absolute Percentage Error (MAPE) 
evaluates average percentage differences, and the Explained Variance 
Score measures the predictable variance in the dependent variable. 
While these metrics offer valuable insights into model fitting, they do 
not fully evaluate prediction accuracy. This paper acknowledges the 
utility of regression but contends that metrics such as sensitivity, 
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specificity, and accuracy are crucial for comprehensive assessment.
Moreover, since SHAP analysis relies exclusively on machine 

learning models, it also inherits these biases, contributing to inaccura
cies in interpretation [7]. Qin et al. also noted several inherent limita
tions associated with the SHAP method [2].

This paper elucidates the reasons behind the biased conclusions 
drawn from traditional feature selection methods and connects these 
biases to the algorithmic limitations that influence feature importance 
assessments. The lack of ground truth values in feature importance as
sessments from machine learning models leads to inherent biases. While 
cross-validation is effective in enhancing target prediction accuracy, it 
does not effectively address the accuracy of feature importance metrics. 
By analyzing common statistical tests, such as Chi-squared tests with p- 
values and Spearman’s correlation with p-values, we reveal how reli
ance on these methods can lead to misinterpretations of feature signif
icance, ultimately compromising model integrity and performance 
[8–11].

In the absence of ground truth values, three key elements are 
essential for establishing true associations between the target and fea
tures: data distribution, the statistical relationship between variables, 
and the validation of statistical significance through p-values. While the 
Chi-squared test indicates the strength of associations, Spearman’s 
correlation provides both strength and directional information, with 
their respective p-values validating the significance of these relation
ships. It’s important to note that while feature importance in machine 
learning models typically ranges from 0 to 1, Spearman coefficients 
range from − 1–1, reflecting different interpretative scales.

The absence of ground truth values for validating feature importance 
introduces two significant challenges for XGBoost: its tree-based meth
odology and the presence of correlated features. XGBoost constructs an 
ensemble of decision trees, calculating feature importance based on the 
frequency of a feature’s use in splits and the gain associated with each 
feature. Consequently, features that are frequently utilized or contribute 
more to information gain can dominate the importance ranking, which 
can be misleading, as other features may play a significant role in the 
model’s predictions but are used less frequently. Additionally, when 
features are correlated, XGBoost tends to favor one feature over others in 
the split decision-making process. This bias can result in the misattri
bution of importance; a single feature might absorb the significance that 
should be shared among several correlated features, leading to skewed 
feature importance scores. As a result, understanding the true contri
butions of each feature can become challenging without proper valida
tion methods in place. Because ground truth values are not available, 
various models—such as MLR, XGBoost, LightGBM, and Cat
Boost—employ different methodologies for calculating feature impor
tance. Qin et al. demonstrated that these models yield divergent feature 
importance rankings, potentially leading to misleading conclusions.

XGBoost, an implementation of gradient boosted decision trees, is a 
highly effective machine learning algorithm known for its predictive 
performance. However, its design and functioning can introduce biases 
in feature importance metrics, particularly when combined with SHAP 
(SHapley Additive exPlanations) values. Understanding the algorithmic 
perspectives that contribute to these biases is crucial for researchers to 
make informed decisions about the validity of feature importance 
interpretations.

First, XGBoost constructs its models by sequentially adding decision 
trees, each trained to correct the errors of its predecessor. This boosting 
process inherently gives more weight to misclassified examples, which 
can amplify the importance of certain features based on how frequently 
they are used to make decisions. Consequently, features that contribute 
to early decisions in the tree-building process may appear dispropor
tionately important, even if they do not substantively influence the 
overall predictive performance. This phenomenon occurs because the 
model is optimized to minimize a loss function based on the predictions 
it makes, and features that lead to better immediate gains can over
shadow those that have significant, yet indirect, effects. As a result, 

SHAP values may yield inflated importance scores that do not reflect the 
true effects of the features when considered independently.

SHAP values offer a theoretically sound method for interpreting 
model predictions by quantifying the contribution of each feature to the 
final prediction. However, these values are calculated based on the 
model’s structure and the interactions among features in XGBoost. Since 
SHAP relies on the mean over various permutations of feature values to 
determine each feature’s contribution, it inherits the decision-making 
biases present in the XGBoost model itself. For instance, if a feature is 
primarily influential in certain regions of the feature space but not across 
the entire dataset, SHAP may overstate its importance if those regions 
are frequently encountered during model training.

Moreover, the interaction effects in decision trees can further 
complicate feature importance assessments. XGBoost captures complex 
interactions between features through its tree-structured representation. 
While this ability is advantageous for capturing nonlinear relationships, 
it can lead to misleading interpretations of feature importance when 
independent features interact in unexpected ways. When SHAP values 
are computed, they attempt to account for these interactions; however, 
the underlying tree’s structure may still skew the perceived contribu
tions of individual features, especially in cases where certain features 
dominate the interaction landscape.

A high degree of fit indicated by RMSE does not guarantee the reli
ability of feature importance rankings generated by XGBoost [2]. The 
tree-based methodology and the presence of correlated features in 
XGBoost mean that biases in feature importances cannot be entirely 
mitigated through cross-validation. While SHAP values offer valuable 
interpretations, they exclusively rely on the underlying model, such as 
XGBoost, which can lead to the inheritance and amplification of any 
biases found in its feature importances. Unlike target accuracy in ma
chine learning, which can be validated against known ground truth 
values, feature importances lack corresponding benchmarks for valida
tion. This absence of a reference complicates the assessment of their 
accuracy and reliability.

To accurately calculate true associations or genuine relationships 
between the target variable and features in the absence of ground truth 
values, three critical elements must be considered: the distribution of the 
data, the statistical relationships among the variables, and the validity of 
those relationships as indicated by p-values. It is essential to first 
conduct Variance Inflation Factor (VIF) analysis to assess and mitigate 
collinearity among features; high VIF values can inflate the significance 
of certain predictors and obscure their true relationships with the target 
variable [12,13]. By addressing collinearity and ensuring a robust sta
tistical framework, we can enhance the reliability of our feature 
importance assessments and draw more meaningful conclusions about 
the underlying data dynamics.

In conclusion, the distinctions between classification and regression, 
alongside the inherent biases in feature importance calculations in ma
chine learning, are pivotal for researchers to comprehend. The process 
by which XGBoost builds models—concentrating on correcting previous 
errors—can skew feature importance towards those that contribute 
early in decisions. Moreover, the complexities of SHAP values, influ
enced by the interactions among features and the model’s structure, 
complicate accurate assessments of feature contributions. While trans
forming regression tasks into classification tasks enhances performance 
evaluation, it is crucial to recognize that a high degree of fit indicated by 
RMSE does not guarantee reliability in feature importance rankings. 
Without ground truth for validation, the assessment of feature impor
tances becomes challenging. By conducting thorough analyses, 
including checking for collinearity through Variance Inflation Factor 
assessments, researchers can improve the reliability of their findings, 
thus facilitating more informed conclusions in the application of ma
chine learning across diverse research fields.
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