
Letter to the Editor
Limitations of sparse partial l
east squares in multiomics: A
critical analysis of linear methods applied to non-linear

biological data
To the Editor:
Gadd et al. investigated how host hepatocyte senescence
influences the success of hepatocyte transplantation in a
mouse model of liver injury using a sparse partial least
squares (sPLS) model for dimensionality reduction of paired
multiomic data.1

Understanding fundamental theoretical principles of ma-
chine learning tools is crucial for biological analysis of
multiomic data. While supervised machine learning provides
ground truth values for target prediction accuracy validation,
feature importance and reduction methods lack such
validation metrics. The application of linear methods such as
sPLS to non-linear data, or parametric approaches to
non-parametric data, can lead to distorted outcomes and
erroneous conclusions.2–4

The application of sPLS to multiomic data, as utilized by
Gadd et al., introduces significant analytical challenges. sPLS is
based on the assumption of linear relationships (y = Xb + ε),
which is fundamentally at odds with the inherently non-linear
dynamics observed in gene regulatory networks and meta-
bolic pathways. This basic discord forces the method to
oversimplify complex, non-linear patterns into linear models,
potentially obscuring critical biological insights and leading to
erroneous conclusions.5–8

Moreover, the parametric constraints of sPLS impose
additional limitations on biological data analysis. While sPLS
relies on fixed parameters and predefined statistical distribu-
tions, biological data often follows unknown or non-normal
distributions. Additionally, by primarily focusing on linear
feature combinations, sPLS overlooks complex synergistic or
antagonistic interactions that are common in biological sys-
tems. The assumption of normally distributed errors further
exacerbates bias, especially when the actual data exhibit
skewed or multimodal patterns, resulting in biased feature
selection.

These methodological limitations can manifest in several
detrimental ways, including incorrect feature importance rank-
ings, missed biological interactions, and ultimately misleading
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interpretations of molecular mechanisms. In practice, crucial
non-linear relationships between genes and proteins might be
overlooked, regulatory network interactions oversimplified, and
essential pathway dependencies misinterpreted, thus sub-
stantially compromising the validity and reliability of multiomic
analyses using sPLS.

To address these limitations, this paper advocates for the
use of non-linear and non-parametric robust statistical
methods. For instance, rank-based correlation measures such
as Spearman’s correlation and Kendall’s tau9 are noted for their
ability to effectively capture monotonic relationships without
assuming linearity. Unlike traditional methods that rely on ab-
solute data values, these techniques assess the rank order of
the data, making them less sensitive to outliers and skewed
distributions – a common characteristic in biological datasets.
Additionally, ordinal association measures like Goodman-
Kruskal gamma and Somers’ D10 provide robust alternatives
for analyzing ranked data by quantifying the strength and
directionality of associations between ordinal variables. These
measures are particularly advantageous when the underlying
data do not meet the criteria of normality or exhibit multimodal
patterns. Accompanied by appropriate p values for statistical
significance, these methods offer a more reliable approach for
uncovering and validating complex biological relationships,
ensuring both statistical rigor and enhanced biolog-
ical relevance.
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