
Letter to the Editor
Revealing bias in feature im
portance through PLS-DA: A
critical examination of machine learning applications in

chronic liver disease
To the Editor:
To assess clinical factors, perform genotyping of known vari-
ants, and conduct comprehensive metabolic phenotyping
aimed at characterizing the regression of fibrosis in patients
with compensated advanced chronic liver disease, Mendoza
et al. employed a partial least squares discriminant analysis
(PLS-DA) model. This methodology sought to evaluate the
importance of individual variables in distinguishing between
patients who experienced regression of fibrosis and those who
did not.1

While Mendoza et al. emphasize the accuracy of their ma-
chine learning predictions, this paper raises critical concerns
about their application of the PLS-DA model in assessing
feature importance. Our analysis suggests a fundamental
misunderstanding of key principles underlying machine
learning methodology. While the primary objective of machine
learning is to achieve precise predictions of the target variable,
the computation of feature importances is intended to clarify
the genuine relationships between the target and the features.
However, the model-specific nature of these importance
measures can introduce biases, potentially leading to
misleading interpretations. More than 100 peer-reviewed pub-
lications have thoroughly examined the issue of bias in feature
importance derived from machine learning models, including
PLS-DA.2–5 Furthermore, achieving high cross-validation ac-
curacy for target prediction does not necessarily validate the
accuracy of the associated feature importance.

The implications of biased feature importances are far from
trivial; they can significantly influence clinical decision-making
and the interpretation of research findings. Misleading feature
importances may distort our understanding of which factors
truly influence outcomes, potentially derailing further research
initiatives and skewing treatment strategies. Given the intricate
and multifaceted nature of chronic liver disease, reliance on
biased results could lead to ineffective or even harmful clin-
ical practices.

Thus, it is critical to approach the analysis of feature im-
portances with caution, acknowledging the inherent potential
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for bias in many machine learning models. We strongly advo-
cate for the use of robust, bias-free statistical techniques, such
as Spearman’s correlation combined with p values, to ascertain
genuine relationships between features and clinical out-
comes.6–9 By adhering to these rigorous analytical standards,
researchers can ensure their findings contribute meaningful
insights to the understanding and treatment of complex dis-
eases like chronic liver disease.

Different machine learning models employ varying method-
ologies for generating feature importance, resulting in distinct
inherent biases associated with each model. Consequently,
reliance on feature importances as definitive indicators of true
associations between variables can lead to erroneous conclu-
sions. It is crucial to recognize that feature importances derived
from models like PLS-DA should not be treated as conclu-
sive relationships.

To establish authentic relationships between the target and
features, three key elements must be considered to ensure the
reliability of the relationship values: thorough assessment of
data distribution, examination of statistical relationships, and
determination of statistical significance through p values.
Based on these elements, careful consideration must also be
given to the choice of model – whether linear or non-linear –
and the selection of parametric or non-parametric approaches.
Since the PLS-DA model is inherently a linear and parametric
method, researchers must diligently evaluate the data for linear
relationships and parametric assumptions prior to its applica-
tion. However, Mendoza et al. appear to have overlooked these
critical checks, which ultimately compromises the integrity of
their findings.

In conclusion, we underscore the importance of employing
sound statistical rigor when interpreting relationships between
variables in clinical research. A more nuanced approach that
prioritizes verification of assumptions and consideration of
alternative methods will yield more reliable and meaningful in-
sights into the associations that underpin complex diseases
such as chronic liver disease, ultimately improving pa-
tient management.
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