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Gu et al. conducted a comprehensive survey on the design and
application of electrocatalysts powered by machine learning
techniques [1]. They presented a novel approach that utilizes
Artificial Neural Networks (ANN) in conjunction with the
SHAP (SHapley Additive exPlanations) method to optimize
membrane electrode assemblies. The ANN model demonstrated
high accuracy in predicting key performance metrics, achieving
root mean square error (RMSE) values of 43.536 mW cm ™2 for
power density and 0.070 gPt kW' for platinum utilization.
Additionally, the SHAP method was employed to identify the
most influential features affecting the target outputs, providing
valuable insights into the optimization process [1].

However, this paper raises significant theoretical and em-
pirical concerns regarding the use of ANN in conjunction
with SHAP due to the model-specific nature of these tech-
niques, which can lead to erroneous interpretations. It ap-
pears that Gu et al. may not fully grasp the fundamental
principles underlying machine learning. In supervised
machine learning models like ANN, two types of accuracy are
crucial: target prediction accuracy and feature importance
reliability. While target prediction accuracy can be validated
against known ground truth values, the derived feature
importances from models lack equivalent ground truth for
validation. As a result, achieving high target prediction
accuracy does not ensure that the feature importances are also
reliable, since there are no established ground truth values for
these features. The function call "explain = SHAP(model)”
further indicates that SHAP may inherit and potentially
amplify any biases present in the feature importances derived
from the underlying model (ANN), leading to misleading

interpretations of the results [2-5]. This highlights the
importance of critically evaluating both the predictions
and the interpretability provided by model-agnostic methods
like SHAP.

In light of these concerns, the paper advocates for a more
robust and multifaceted approach utilizing unsupervised
machine learning techniques, such as Feature Agglomeration
(FA) and Highly Variable Gene Selection (HVGS). FA is a
dimensionality reduction technique that aggregates similar
features, thereby simplifying the data set and reducing noise,
which can enhance the interpretability of the model and the
reliability of its predictions. HVGS focuses on selecting a
subset of features that exhibit significant variability across
samples, ensuring that only the most informative features are
retained for further analysis.

Following the feature selection process, the authors suggest
employing nonlinear nonparametric statistical methods, such
as Spearman's correlation, to assess the relationships between
features and outcomes. Spearman'’s correlation evaluates the
strength and direction of the association between ranked
variables, making it particularly useful in identifying mono-
tonic relationships that do not necessarily follow a linear
pattern. The accompanying p-values provide a measure of
statistical significance, offering insights into the reliability
of these correlations. By leveraging these advanced methods,
researchers can achieve a deeper understanding of the
key factors influencing electrocatalyst performance, while
also mitigating the risks associated with relying solely on
model-specific interpretations.
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