
Model-specific feature importances: Distinguishing true associations from 
target-feature relationships

Kusuma et al. (2024) developed logistic regression, random forests, 
and gradient boosting algorithms to predict suicide attempts at two 
distinct stages. They calculated feature importances to identify the most 
significant predictors of suicide attempts. However, many researchers, 
including Kusuma et al., fail to recognize the distinction between true 
associations and model-specific feature importances. Feature impor
tances in machine learning are inherently model-specific due to biases 
and can be influenced by the bias and variance of the model, potentially 
leading to results that differ from true outcomes (Ribeiro et al., 2016; 
Pagano et al., 2023; Johnsen et al., 2023). Additionally, complex models 
can capture non-linear relationships that simpler models may miss, 
further complicating the interpretation of feature importances. Over
fitting is another issue, where the model captures noise in the training 
data as if it were a true signal, leading to misleading importance scores. 
Therefore, this paper recommends using chi-squared tests and p-values 
instead of feature importances for identifying true associations between 
the target and features.

Feature importance and chi-squared tests serve different purposes in 
statistical analysis and machine learning, and they have distinct impli
cations for understanding associations between features and the target 
variable. While feature importance measures indicate how much each 
feature contributes to the model's predictions, chi-squared tests and p- 
values are used in statistical hypothesis testing to determine whether 
there is a significant association between categorical variables, 
providing a more robust measure of true associations.

Feature importance measures in machine learning indicate how 
much each feature contributes to the model's predictions. However, they 
do not necessarily reflect true associations between the features and the 
target variable. Feature importance values are specific to the model 
used, meaning different models (e.g., decision trees, random forests, 
logistic regression) may assign different importance scores to the same 
features (Saarela and Jauhiainen, 2021). Additionally, feature impor
tance can be influenced by the bias and variance of the model, with 
complex models capturing non-linear relationships that simpler models 
may miss (Saarela and Jauhiainen, 2021; Johnsen et al., 2023; Gichoya 
et al., 2023). Furthermore, feature importance measures can be affected 
by overfitting issues, where the model captures noise in the training data 
as if it were a true signal, leading to misleading importance scores 
(Alqahtani et al., 2024).

Chi-squared tests and p-values are used in statistical hypothesis 
testing to determine whether there is a significant association between 
categorical variables. They are considered to provide true associations 
for several reasons (Sharpe, 2015; Andrade, 2019). First, chi-squared 
tests assess whether the observed frequencies in a contingency table 
differ significantly from expected frequencies, with a low p-value indi
cating a significant association between the variables. Second, the chi- 

squared test of independence specifically tests whether two categorical 
variables are independent, and if the test rejects the null hypothesis, it 
suggests a true association between the variables. Lastly, p-values pro
vide a measure of the probability that the observed association is due to 
random chance, allowing researchers to control for Type I errors (false 
positives).

Permutation feature importance (PFI) measures the performance 
degradation when features are randomly sorted in a model-independent 
manner (Breiman, 2001). PFI quantifies the relative importance of fea
tures in relation to the target variable within a specific model, while chi- 
squared tests identify true associations between categorical variables 
and the target. Although PFI does not measure true associations, it can 
be used alongside P-values to provide a comprehensive analysis 
(Breiman, 2001).

We emphasize the practical importance of complex predictive 
models, which are indispensable in real-world applications. Addition
ally, we acknowledge the limitations of basic statistical methods, such as 
p-values, particularly in the context of modern AI and machine learning. 
This paper underscores the necessity for caution in the contemporary AI 
landscape, where there is a tendency to overemphasize feature impor
tance. By addressing these points, we aim to clarify that feature 
importance metrics do not necessarily indicate true associations. 
Furthermore, we highlight the role of Chi-squared tests and p-values in 
statistical methods, emphasizing their relevance and limitations in the 
analysis of predictive models.
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