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Letter to the Editor 

Limitations of XGBoost-SHAP integration for 
interpretable machine learning in 
antimicrobial resistance prediction

Yuan et al. investigated machine learning applications for 
predicting antimicrobial resistance in Enterobacterales blood-
stream infections.1 Their research implemented XGBoost machine 
learning models to forecast resistance to seven antibiotics in 
bloodstream infection cases. Their study featured SHapley Ad-
ditive exPlanations (SHAP) plots illustrating feature importance 
and their impacts on model output, particularly for amoxicillin 
resistance prediction at the time of blood culture sampling. Ad-
ditional SHAP plots demonstrated how the time elapsed since the 
last resistant isolate influenced predictions of resistance to the 
same antibiotic.1

This paper’s methodology reveals potential limitations in inter-
pretation stemming from the combination of XGBoost with SHAP 
analysis. Yuan et al. appear to overlook certain fundamental machine 
learning principles critical to proper interpretation. While su-
pervised machine learning models like XGBoost can be validated 
against ground truth values (labels) for prediction accuracy, the 
feature importances derived from these models lack corresponding 
ground truth for accuracy validation. It’s essential to understand that 
feature importance in models such as XGBoost reflects contributions 
to prediction outcomes rather than true causal associations between 
variables. High prediction accuracy does not necessarily guarantee 
reliable feature importance rankings, as no ground truth exists to 
verify these attributions.2–5

The implementation approach (explain=SHAP(model)) in-
dicates that SHAP analysis wholly depends on the underlying 
XGBoost model, inheriting and potentially amplifying any biases 
present in the model’s feature importance calculations. This de-
pendency can lead to misleading interpretations of variable re-
lationships.6–10 Further analysis demonstrates that feature 
ranking is inconsistent and unstable when top features are sys-
tematically removed, highlighting the model-specific nature of 
XGBoost’s feature importance metrics rather than reflecting true 
biological or clinical relationships.

While SHAP is a powerful interpretability method, its appli-
cation with XGBoost presents significant reliability concerns. The 
outputs from SHAP with XGBoost can be misleading because they 
fundamentally reflect model-specific feature utilization patterns 
rather than true causal mechanisms or biological relationships. 
When features are systematically removed from the model, the 
remaining feature importance rankings often shift dramatically, 
demonstrating instability in these attributions. This phenomenon 
occurs because XGBoost redistributes importance among available 
features rather than preserving consistent relationships between 
variables and outcomes. Furthermore, XGBoost’s tendency to 

favor features with higher cardinality (more unique values) can 
artificially inflate the importance of certain variables regardless of 
their true predictive value. In clinical contexts such as anti-
microbial resistance prediction, these algorithmic artifacts can 
lead to incorrect conclusions about which patient factors truly 
drive resistance patterns. In the absence of methods for accurately 
calculating true associations between variables, a more robust 
approach would involve a multifaceted framework using un-
supervised machine learning models such as feature agglomera-
tion (FA) and highly variable gene selection (HVGS) to 
complement SHAP, followed by nonlinear nonparametric statis-
tical methods such as Spearman’s correlation with p-values to 
identify monotonic relationships among variables. While FA, 
HVGS, and Spearman’s correlation offer greater stability in feature 
importance rankings, SHAP analyses based solely on XGBoost in-
evitably suffer from instability in feature rankings that limit their 
clinical interpretability and applicability.
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