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Feature assessment of MOF biocompatibility 
should consider statistical approaches 
beyond machine learning models
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Menon and Fairen-Jimenez investigated 

guiding the rational design of biocompat-

ible metal-organic frameworks for drug 

delivery.1 In their computational pipeline 

workflow for assessment of metal organic 

framework (MOF) biocompatibility, the 

second workflow (ii) contains three fatal 

assumptions. The first is that feature se-

lection is carried out to find the optimum 

subset of features that can maximize 

model performance. The second is 

that these subsets are then used to train 

different models—namely random for-

ests, support vector machines, and 

gradient boosted machines—on a coarse 

grid of hyperparameters evaluated across 

multiple metrics. The best-performing 

model is further optimized on a fine grid 

of hyperparameters. The third is that the 

final model is first validated on unseen 

test data and then used to screen the 

Cambridge Structural Database (CSD) 

for potentially biocompatible MOF candi-

dates for drug delivery.

This paper highlights significant con-

cerns regarding three critical assumptions: 

the distinction between target prediction 

accuracy and feature importance accuracy 

is crucial. Achieving high target prediction 

accuracy does not necessarily ensure the 

reliability of feature importances. Menon 

and Fairen-Jimenez must address funda-

mental theoretical principles of machine 

learning, particularly the importance of 

ground truth values. While supervised ma-

chine learning can leverage ground truth 

values for validating target prediction accu-

racy, feature importances derived from 

machine learning models do not have cor-

responding ground truth values. The lack 

of these values in feature importance cal-

culations results in disparate methodolo-

gies employed by different models, which 

can inherently lead to biased assessments 

of feature importance.2–7 Over 100 peer-re-

viewed articles documented non-negli-

gible biases in feature importances from 

models.2–7

Despite machine learning models 

achieving high prediction accuracy, the 

reliability of feature importance remains 

questionable because of the absence of 

ground truth values. While these values 

effectively validate target prediction accu-

racy, they fail to provide a robust frame-

work for assessing feature importance. 

In the absence of ground truth values, ac-

curate determination of target-feature as-

sociations requires consideration of three 

critical statistical elements: data distribu-

tion characteristics, statistical relation-

ships between variables, and validation 

through statistical significance (p values).

This paper therefore recommends aug-

menting their pipeline with information- 

theoretic tools—specifically total correla-

tion (TC)8 and transfer entropy (TE)9—to 

capture complex, higher-order depen-

dencies that standard feature-importance 

methods miss. TC quantifies the joint syn-

ergy and redundancy among multiple de-

scriptors, while TE measures directional, 

potentially nonmonotonic, information 

flow between features and the target. 

Together, these model-agnostic metrics 

provide a statistically rigorous framework 

for uncovering intricate target-feature re-

lationships and thus yield more reliable 

guidance in the in silico screening of 

biocompatible MOFs for drug delivery.
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