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A B S T R A C T

In the rapidly evolving field of materials science, a solid understanding of machine learning principles is essential 
for conducting accurate analyses and deriving meaningful conclusions. Ground truth values are critical for 
validating accuracy, particularly in supervised machine learning, where they serve as benchmarks for target 
prediction. However, feature importances derived from models often lack corresponding ground truth values, 
leading to inherent biases in their interpretation. This paper examines three case studies that illustrate the pitfalls 
associated with a limited understanding of key machine learning concepts, including linear versus nonlinear 
models and parametric versus nonparametric approaches. By addressing these foundational elements, re
searchers can enhance the reliability of their findings when investigating complex relationships within materials 
data. The issues highlighted emphasize the need for employing error-free and bias-free methodologies, such as 
robust statistical techniques, to ensure credible outcomes. Ultimately, this work advocates for improved practices 
in machine learning, which are vital for driving significant advancements in materials science.

1. Introduction

Many researchers are unaware of the widespread misapplication of 
machine learning tools that occurs when fundamental theoretical and 
empirical principles are not properly understood. In the era of large 
language models (LLMs), their application in materials science has 
become increasingly prevalent. However, current generative AI systems 
based on LLMs typically achieve approximately 85 % accuracy, leaving a 
15 % error rate that necessitates careful scrutiny. This underscores the 
critical need for users to independently validate generated outcomes 
using appropriate verification methods. When researchers lack solid 
grounding in machine learning principles, the reliability of their results 
may be significantly compromised.

The misapplication of machine learning techniques can be catego
rized into three distinct types: violation of fundamental assumptions 
underlying AI tools, challenges related to ground truth in model inter
pretation, and other critical methodological errors. A crucial distinction 
exists in validation approaches: while supervised machine learning 
models utilize ground truth values to validate prediction accuracy, the 

feature importance rankings derived from these models lack corre
sponding ground truth mechanisms for accuracy validation. Target 
prediction accuracy and feature importance reliability are distinct is
sues. In other words, high prediction accuracy does not guarantee reli
able feature importances. The reliability of outcomes is fundamentally 
determined by the integrity, representativeness, and quality of the 
datasets employed. To ensure robust results and reliable conclusions, 
multi-faceted validation approaches incorporating domain knowledge, 
statistical verification, and cross-model comparison are essential, 
particularly when interpreting model-derived feature importance in 
materials science applications.

This paper provides empirical benchmarking of common mis
applications in machine learning for materials science. Linear models 
such as LASSO, despite their widespread use and interpretability ad
vantages, can produce distorted and skewed outcomes due to their 
inherently linear and parametric nature, potentially leading to erro
neous interpretations and conclusions. There are no significant differ
ences between materials science and other fields in this regard, as these 
methodological limitations apply across scientific domains. To 
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demonstrate this phenomenon, this paper evaluates feature selection 
quality using the MNIST dataset, comprising 70,000 samples with 784 
features (corresponding to 28 × 28 pixel images). Three feature selec
tion methodologies to select top 30 features—LASSO, Mutual Informa
tion (MI), and Transfer Entropy (TE)—are systematically compared by 
mnisttest.py for reproducibility purposes [10]. Performance is evaluated 
using cross-validation accuracy, with the premise that superior feature 
selection methods yield higher accuracy scores. MI and TE selections are 
cross-validated using random forest models trained on the selected 
features. The results conclusively demonstrate that LASSO significantly 
underperforms in feature selection compared to MI and TE approaches 
due to limitations of LASSO linearity. Table 1 presents the comprehen
sive mean cross-validation accuracy metrics that quantify these perfor
mance differences.

Symbolic regression (SR) transforms "black box" machine learning 
into interpretable expressions for materials science by exploring math
ematical relationships in data. Their review examines SR theories, 
workflows, techniques, codes, and applications, while addressing key 
challenges: GPU acceleration, transfer learning, balancing accuracy with 
complexity, integration with large language models for physical inter
pretability, and multimodal approaches—all crucial for unlocking SR’s 
full potential in materials design and research. Liu et al. applied machine 
learning methods to materials science and developed frameworks that 
embed domain knowledge into the modeling process. Their work em
phasizes the critical importance of incorporating materials domain 
expertise throughout machine learning model development.

In the rapidly evolving field of materials science, grasping the 
fundamental principles of machine learning is essential for advancing 
research and development. Key concepts such as accuracy, reliability, 
and predictive power directly impact the analyses performed by re
searchers. As materials become more complex, the demand for sophis
ticated data analysis techniques capable of effectively interpreting 
material properties and behaviors increases. Linear and nonlinear 
models play a vital role in this process, each offering unique advantages 
and limitations that can significantly influence research outcomes.

Linear models operate under the assumption of a direct, proportional 
relationship between input features and output targets, making them 
relatively straightforward to interpret and apply—for instance, in pre
dicting tensile strength from compositional data. This clarity is espe
cially beneficial when researchers aim to gain preliminary insights into 
material behavior. Conversely, nonlinear models excel at capturing 
intricate relationships that linear models may overlook. By leveraging 
techniques like polynomial regression and neural networks, nonlinear 
models are particularly valuable in complex scenarios, such as phase 
transitions and stress-strain relationships, where variable interactions 
can be multifaceted.

The choice between linear and nonlinear modeling approaches has 
profound implications for research results [4–6]. While linear models 
are generally more straightforward and less susceptible to overfitting, 
nonlinear models can provide deeper insights but often act as "black 
boxes," raising interpretability concerns. Therefore, a comprehensive 
understanding of these methodologies is essential for researchers who 
wish to leverage machine learning effectively in materials science.

In addition to selecting modeling approaches, researchers must 
differentiate between parametric and nonparametric methods. Para
metric methods rely on predefined distributions, allowing for precise 
estimates when underlying assumptions hold true, while nonparametric 
approaches offer increased flexibility, accommodating a wider variety of 

data types and distributions. This choice can significantly affect the 
validity of research conclusions, underscoring the importance of a 
nuanced understanding of each method’s applicability [7–9].

This paper presents three illustrative case studies [1–3] that high
light potential pitfalls arising from a lack of comprehension in these 
critical areas. It particularly emphasizes the implications of dis
tinguishing between scenarios with and without ground truth values for 
accuracy validation. High prediction accuracy associated with ground 
truth does not automatically guarantee reliable feature importances, 
feature selections, or feature reductions. Over 100 peer-reviewed arti
cles highlighted non-negligible biases in feature importances from ma
chine learning models.

As machine learning techniques gain prevalence in the field, re
searchers frequently face challenges stemming from insufficient famil
iarity with these foundational concepts. Consequently, this paper 
advocates for adopting robust, unbiased methodologies that ensure 
research outcomes reflect true relationships within materials data. By 
promoting best practices in machine learning, we aim to enhance the 
reliability and effectiveness of analyses, ultimately paving the way for 
groundbreaking innovations in material development.

Understanding true associations—genuine relationships between 
target variables and their features—is crucial for effective predictive 
modeling. Such associations inform how changes in features can affect 
outcomes, often pointing to causal connections. For instance, in mate
rials science, the composition of an alloy can profoundly impact its 
tensile strength, illustrating the important distinction between correla
tion and causation. However, identifying these relationships is often 
complicated by noise in datasets that can obscure real correlations. 
Effective data preprocessing, combined with robust statistical methods, 
is essential for isolating true associations. Furthermore, genuine re
lationships should demonstrate consistency across studies, enhancing 
their credibility and suggesting underlying physical mechanisms.

In conclusion, true associations are characterized by consistency, 
significance, and reproducibility—critical elements for informed 
decision-making in materials science. Determining these associa
tions—especially in the absence of ground truth values—demands a 
comprehensive understanding of data distribution, statistical relation
ships, and validation through methods such as p-values. A robust grasp 
of these aspects is vital for selecting appropriate statistical methodolo
gies and ensuring accurate interpretations.

This paper also addresses the biases commonly encountered when 
evaluating feature importance derived from standard machine learning 
models, which can lead to erroneous conclusions. In the absence of ac
curate calculations in feature importances, this paper advocates for the 
use of multifaceted approaches using unsupervised machine learning 
models such as feature agglomeration and highly variable gene selection 
and followed by nonlinear nonparametric statistical methods such as 
Spearman’s correlation. Three tools have a great feature ranking sta
bility while PCA has feature ranking unstability due to linear nature of 
PCA.

2. Linear vs nonlinear models

Linear and nonlinear models represent fundamental approaches in 
machine learning for materials science. Linear models establish direct 
proportional relationships between input features and output targets, 
creating straightforward equations that make interpretation clear. They 
excel at predicting properties like tensile strength based on composi
tional data when relationships are relatively simple. Nonlinear models 
capture complex patterns through techniques like polynomial regres
sion, decision trees, and neural networks, excelling at predicting be
haviors involving complex interactions such as phase transitions. While 
linear models provide clear interpretability, nonlinear models can 
function as "black boxes" despite superior predictive power. Linear 
models require less computational power and resist overfitting with 
limited data, while nonlinear models demand more resources but 

Table 1 
Quality of feature selection with 5-fold cross-validation accuracy.

Method 5-fold cross-validation accuracy

Mutual Information (with RF) 0.8445 ± 0.0023
Transfer Entropy (with RF) 0.8237 ± 0.0021
LASSO (with LASSO classifier) 0.7299 ± 0.0024
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capture intricate behaviors common in materials science.

3. Parametric vs nonparametric

Parametric methods assume data follows a specific distribution and 
estimate parameters like mean and variance. Examples include linear 
regression, t-tests, and ANOVA, working well when relationships follow 
expected mathematical forms. Nonparametric methods make no distri
bution assumptions, focusing instead on data ranks or order. They prove 
valuable with small sample sizes or when parametric assumptions are 
violated, using techniques like the Wilcoxon rank-sum test. Parametric 
methods provide powerful tests when assumptions hold true, enabling 
clearer conclusions about material behavior. When these assumptions 
are violated, they yield misleading results. Nonparametric methods offer 
greater flexibility across diverse data types, though with potentially less 
statistical power.

4. True associations between variables

True associations represent actual connections between target vari
ables and features. Understanding these relationships helps determine 
how feature changes impact outcomes, distinguishing between causa
tion (direct impact) and correlation (variables moving together without 
causal links). Identifying true associations requires filtering out noise 
that obscures genuine relationships. True associations remain consistent 
across samples and experimental conditions, while effective pre
processing and statistical methods help isolate meaningful relationships. 
Genuine relationships typically align with underlying physical mecha
nisms and should demonstrate statistical significance and reproduc
ibility across different datasets.

5. True relationships with machine learning models

Machine learning aims to predict targets with ground truth values for 
validation. However, feature importances lack ground truth values for 
accuracy validation, causing different models to generate different 
feature importances with inherent biases. Feature importance tech
niques (like SHAP) can inherit and amplify these biases. Feature selec
tion methods like MLR-EM and LASSO identify contextually relevant 
features but rely on potentially biased importance assessments. 
Dimensionality reduction techniques like PCA help identify relevant 
features but may still be influenced by underlying biases. Without 
ground truth values for validation, feature importances derived from 
machine learning models remain inherently biased, potentially 
obscuring true relationships between variables and outcomes. Re
searchers should adopt robust validation techniques, employ multiple 
methodologies, and integrate domain expertise to mitigate these biases 
when interpreting feature importances.

6. Conclusion

In conclusion, this paper underscores the critical importance of a 
fundamental understanding of machine learning principles for re
searchers in materials science, essential for ensuring accurate analyses 
and reliable interpretations of results. By analyzing case studies that 
demonstrate the detrimental consequences of misapplying machine 
learning concepts, we emphasize the necessity of mastering both linear 
and nonlinear models, as well as parametric and nonparametric 
methods. The choice of these models profoundly impacts the reliability 
of findings related to material properties and behaviors, highlighting the 
urgent need for sound methodological frameworks.

Additionally, the ability to distinguish between correlation and 
causation is crucial for establishing authentic associations between 
target variables and their corresponding features in complex datasets. 
This task is often complicated by noise, which requires the use of robust 
statistical methods to clarify genuine relationships. As materials 

research increasingly incorporates advanced machine learning tech
niques, adopting error-free and bias-free methods becomes imperative 
to enhance the validity of outcomes.

As the field evolves, cultivating rigorous machine learning practices 
will be essential for improving the efficacy and reliability of materials 
analyses. By carefully selecting appropriate models and proactively 
addressing potential biases, researchers can significantly elevate their 
predictive capabilities. Collectively, these efforts will not only propel 
innovation in materials science but also contribute to the development 
of new materials with desirable attributes. This progress is poised to 
benefit a wide variety of industries and applications, showcasing the 
transformative potential of integrating robust statistical methods with 
machine learning in advancing materials research. Ultimately, the 
adoption of improved practices is vital for driving significant advance
ments that can redefine the future of materials science.
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[2] D.A. Winkler, A.E. Hughes, C. Özkan, et al., Impact of inhibition mechanisms, 
automation, and computational models on the discovery of organic corrosion 
inhibitors, Prog. Mater. Sci. 149 (2025) 101392, https://doi.org/10.1016/j. 
pmatsci.2024.101392.

[3] J. Hu, Y. Zou, Y. Deng, et al., Recent advances in non-ionic surfactant templated 
synthesis of porous metal oxide semiconductors for gas sensing applications, Prog. 
Mater. Sci. 150 (2025) 101409, https://doi.org/10.1016/j.pmatsci.2024.101409.

[4] M. Chen, K. Papadikis, C. Jun, N. Macdonald, Linear, nonlinear, parametric and 
nonparametric regression models for nonstationary flood frequency analysis, 
J. Hydrol. 616 (2023) 128772, https://doi.org/10.1016/j.jhydrol.2022.128772.

[5] R.J. Janse, T. Hoekstra, K.J. Jager, et al., Conducting correlation analysis: 
important limitations and pitfalls, Clin. Kidney J. 14 (11) (2021) 2332–2337, 
https://doi.org/10.1093/ckj/sfab085.

[6] K.R. Moon, D. van Dijk, Z. Wang, S. Gigante, D.B. Burkhardt, W.S. Chen, 
S. Krishnaswamy, Visualizing structure and transitions in high-dimensional 
biological data, Nat. Biotechnol. 37 (12) (2019) 1482–1492, https://doi.org/ 
10.1038/s41587-019-0336-3.

[7] E. Matusik, O. Vassal, A. Conrad, et al., Parametric and nonparametric population 
pharmacokinetic analysis of fluconazole in critically ill patients and dosing 
simulations for candida infections, Antimicrob. Agents Chemother. 68 (11) (2024) 
e0099124, https://doi.org/10.1128/aac.00991-24.

[8] Politi M.T. Ferreira, J.C. Patino, CM. Nonparametric statistical tests: friend or foe? 
J. Bras. Pneumol. 47 (4) (2021) e20210292 https://doi.org/10.36416/1806-3756/ 
e20210292.
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