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Letter to the Editor,  

Chen et al. (2025) conducted a multi-institutional radiomics 
study to differentiate glioblastoma from solitary brain metastasis 
using contrast-enhanced T1-weighted magnetic resonance ima-
ging features extracted from the brain–tumor interface (BTI) (1). 
Their study focused on a 10 mm BTI region and employed a 
multi-step feature selection process. This process included in-
traclass correlation coefficient filtering, hypothesis testing, 
minimum redundancy maximum relevance, and finally Least 
Absolute Shrinkage and Selection Operator (LASSO) regression, 
which was used to identify ten radiomic features for model de-
velopment. These features were then used to train nine machine 
learning (ML) algorithms. Logistic regression (LR) was selected as 
the best-performing model, achieving an area under the curve of 
0.808 on the test set. To interpret the model’s predictions, they 
applied SHapley Additive Explanations (SHAP) to quantify the 
contribution of each feature.

Although this approach is widely used in radiomics-based ML, 
it raises important concerns regarding the reliability of feature 
attribution and interpretability. LASSO regression, as a linear and 
parametric method, may exclude features that capture nonlinear 
or interaction effects, introducing bias into the selected feature 
set. This bias can influence the LR model and propagate into 
SHAP-based explanations. Since SHAP is model-dependent, it 
reflects and amplifies these biases, resulting in importance scores 
that do not necessarily correspond to biological or causal re-
levance. The assumption that predictive accuracy confirms fea-
ture relevance is flawed and widely challenged. Numerous 
studies have documented the disconnect between high predictive 
performance and meaningful attribution, underscoring the need 
for rigorous, model-independent frameworks that support re-
producible biomarker discovery and clinically meaningful inter-
pretation (see Supplementary Material) (2).

First, LASSO, being a linear and parametric method, in-
herently eliminates nonlinear features, introducing critical biases 
(3). It tends to select only one variable from highly correlated 
groups, potentially overlooking other important predictors. Its 

tendency to shrink coefficients to zero can oversimplify the 
model by excluding genuinely relevant variables. Moreover, 
LASSO is sensitive to its regularization parameter; improper 
tuning can significantly affect performance and introduce con-
figuration-specific biases.

Second, their reliance on LR presents a notable methodolo-
gical limitation (4). LR is a linear model that assumes a direct 
relationship between predictors and the log-odds of the out-
come. It is also parametric, relying on a fixed number of para-
meters and a predefined functional form. This combination of 
linearity and parametric assumptions makes LR less suitable for 
complex domains like radiomics, where relationships between 
features and biological outcomes are often nonlinear and data 
distributions rarely conform to simple mathematical structures.

Additionally, SHAP values, a widely used method in ex-
plainable AI for interpreting feature importance, inherit and often 
amplify biases from the underlying model (5). Because SHAP 
relies on model outputs, it remains vulnerable to embedded 
biases, which can lead to misleading interpretations and com-
promise analytical reliability. The pipeline used by Chen et al., 
combining LR with SHAP, exemplifies this issue. The assertion 
that this approach successfully identifies predictive features war-
rants careful scrutiny, as compounded biases from both LR and 
SHAP may significantly undermine interpretability.

Evaluating feature importance remains challenging due to the 
lack of definitive ground truth. Differences in algorithmic design 
and assumptions lead to inconsistent feature rankings across 
models, complicating interpretation. This highlights the need for 
careful methodological scrutiny. In radiomics, where biological 
relevance is often unclear, it is essential to validate whether 
model-derived feature contributions truly reflect causal biological 
relationships.

To overcome methodological pitfalls and improve interpret-
ability in health risk assessment, a more robust, multi-faceted 
analytical framework is essential. This should reflect the com-
plexity of biomedical data and incorporate methods suited to 
non-linear relationships. Unsupervised techniques such as Feature 
Agglomeration and, where applicable, Highly Variable Gene 
Selection, offer model-independent insights (6,7). Additionally, 
non-parametric statistics like Spearman’s rho and Kendall’s tau 
can detect monotonic associations without assuming linearity, 
enhancing both precision and interpretability (8). These ap-
proaches are particularly valuable in translational biomarker re-
search, where clarity and reproducibility are critical for clinical 
decision-making and stakeholder communication.

In conclusion, despite their utility in feature selection and 
prediction, techniques like LASSO, LR, and SHAP carry in-
herent biases and limitations, especially in complex domains such 
as medical diagnosis. Addressing these challenges requires a multi- 
faceted analytical framework that integrates rigorous statistical 
methods with ML. Such an approach enhances interpretability 
and supports more reliable, clinically meaningful insights.
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APPENDIX A. SUPPORTING INFORMATION

Supplementary data associated with this article can be found 
in the online version at doi:10.1016/j.acra.2025.07.048.
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