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To the Editor,
Duwe et al. presents a promising AI-based system for generating 

explainable treatment recommendations in urothelial and renal cell 
carcinomas, aimed at supporting decision-making in multidisciplinary 
cancer conferences [1]. While their approach demonstrates strong pre
dictive performance, it raises important concerns regarding the reli
ability of model interpretability that warrant further discussion. Their 
system utilized various machine learning (ML) and deep learning tech
niques to train a classifier to mimic treatment recommendations (TR), 
achieving excellent F1-scores for both urothelial carcinoma (UC) and 
renal cell carcinoma (RCC) across different treatment categories (e.g., 
UC: ’Surgery’ 0.81, ’Anti-cancer drug’ 0.83, ’Gemcitabine/Cisplatin’ 
0.88; RCC: ’Anti-cancer drug’ 0.92, ’Nivolumab’ 0.78, ’Pem
brolizumab/Axitinib’ 0.89). While the study offers valuable insights and 
provided explainability through visualized clinical feature importance 
scores, it also presents two key methodological concerns that require 
further analysis.

First, the feature importance rankings varied substantially across 
models (XGBoost, CatBoost, Random Forest, SoftOrdering CNN), sug
gesting model-specific biases in how clinical features are interpreted. 
This inconsistency raises concerns about the stability and generaliz
ability of the system’s explanations. Second, although predictive accu
racy was high, it is essential to recognize that accuracy alone does not 
validate the reliability of feature attribution. Prediction performance 
and feature importance are two aspects that are conceptually distinct. As 
supported by over 300 peer-reviewed articles, strong predictive metrics 
do not necessarily imply trustworthy or consistent feature importance 
rankings [2,3]. A more detailed discussion and supporting references are 
provided in the supplementary material.

XGBoost, Catboost and Random Forest, like other tree-based models, 
exhibit inherent biases in feature importance due to their tree-building 
process, which can overemphasize features used in earlier splits [4]. 
This could lead to a skewed perception of clinical factors’ importance. 

Deep learning models like TabPFN, TabNet, SoftOrdering CNN, and FCN 
also show significant biases. This is largely because of their complex 
architecture and a tendency to overfit when optimized for high predic
tive accuracy [5]. In clinical datasets, which are often noisy and 
high-dimensional, this overfitting can lead models to capture spurious 
patterns rather than meaningful clinical signals, resulting in biased and 
potentially misleading importance scores.

The findings in this study raise serious doubts about the central claim 
made by Duwe et al. that their AI system offers both high accuracy and 
interpretability in treatment recommendations. While the reported F1- 
scores indicate strong predictive performance, the inconsistent feature 
importance across models reveals a lack of reliability in identifying key 
clinical factors. This instability undermines the credibility of the sys
tem’s explanations. If different models highlight conflicting aspects of 
the data due to inherent biases, then the rationale behind treatment 
decisions may reflect model-specific artifacts rather than clinically 
meaningful insights. Without rigorous validation of feature attribution 
across architectures, the system risks producing explanations that are 
not only inconsistent but potentially misleading.

Additionally, SHAP values, while intended to elucidate feature 
importance, inherit and may even exacerbate biases from the underlying 
machine learning model [6]. The function of ’explain = SHAP(model)’ 
underscores this dependency. Since SHAP relies on the model’s output 
for its explanations, it is inherently vulnerable to the model’s biases. 
This can lead to flawed interpretations and undermine the reliability of 
the analysis. Furthermore, although machine learning models often 
prioritize predictive accuracy, achieving high accuracy does not ensure 
the reliability of derived feature importances.

A major challenge in validating feature importance is the lack of 
ground truth. Different models rely on distinct methodologies, which 
introduce model-specific biases and lead to inconsistent rankings. This 
issue is particularly evident in Duwe et al.’s study, which employed 
complex and high-dimensional feature sets—77 patient input 
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parameters for UC and 76 for RCC. Such complexity, combined with 
potential collinearity, impairs interpretability and increases the risk of 
overfitting. In clinical research, where data are inherently noisy and 
intricate, models may capture spurious patterns rather than meaningful 
signals, resulting in unreliable importance scores. Furthermore, the 
sensitivity of feature importance to small changes in data or model 
configurations undermines its stability, posing serious challenges to 
reproducibility and clinical credibility.

To overcome methodological limitations and improve the reliability 
of health risk assessments, a more robust and multi-dimensional 
analytical framework is essential. This framework should reflect the 
complexity of clinical data and incorporate methods capable of 
capturing non-linear relationships. Unsupervised techniques such as 
Feature Agglomeration (FA) and, where applicable, Highly Variable 
Gene Selection (HVGS) [7,8] offer valuable alternatives. In addition, 
non-parametric statistical methods like Spearman’s rho and Kendall’s 
tau [9,10] can detect monotonic associations without assuming line
arity, enhancing both precision and interpretability. These approaches 
are particularly useful in translational biomarker research, where clear 
and trustworthy insights must inform clinical decisions. Their inter
pretability also facilitates communication across diverse healthcare 
stakeholders, helping translate statistical findings into actionable out
comes. Ultimately, integrating these methods is key to generating in
sights that are accurate, reproducible, and clinically meaningful.

In conclusion, while machine learning methods such as ensemble 
models, deep learning, and SHAP are powerful for treatment recom
mendation, they carry biases that limit interpretability. In clinical 
oncology, where decisions must be both accurate and transparent, 
integrating rigorous statistical methods is essential. A multi-faceted 
approach that combines predictive strength with interpretive clarity 
marks a foundational shift in how AI supports clinical decision-making.
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