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A B S T R A C T

Liu et al. (2025) present an innovative approach to PM10 source apportionment in urban environments by 
integrating Positive Matrix Factorization with machine learning (ML) models including XGBoost, Random Forest 
(RF), and Support Vector Machine (SVM). Their use of the Lung Performance Optimization (LPO) algorithm for 
XGBoost and 10-fold cross-validation improved model robustness, with the LPO-XGBoost variant achieving the 
highest predictive accuracy (r2 = 0.88). SHAP values were employed to interpret feature importance, but con
cerns arise regarding the reliability of these rankings due to model-specific biases. Tree-based models may 
overemphasize features selected early in the decision process, while SVM models can obscure original feature 
relationships through kernel transformations. Although Liu et al. interpret variability in feature importance 
across models as analytical depth, this may reflect methodological inconsistencies rather than strength. SHAP 
values, being model-dependent, can inherit and amplify biases, complicating interpretation. In environmental 
research, where data are often noisy and high-dimensional, such instability can undermine the reliability of 
insights. Future studies should consider incorporating unsupervised learning techniques and non-parametric 
statistical methods to improve interpretability and robustness. Specifically, methods such as Feature Agglom
eration (FA), Highly Variable Gene Selection (HVGS), Spearman’s rho, and Kendall’s tau can better capture 
complex and nonlinear associations, particularly in the context of health risk assessments. By integrating these 
approaches, researchers can enhance the stability of feature selection, reduce the influence of model-specific 
biases, and improve the transparency of analytical outcomes. A more systematic and cautious approach to 
model evaluation will ultimately strengthen reproducibility and support more informed environmental decision- 
making.

Letter to the Editor:

Liu et al. (2025) investigated the prediction and source apportion
ment of PM10 concentrations in urban environments by integrating 
Positive Matrix Factorization (PMF) with several machine learning (ML) 
models, including Random Forest (RF), Support Vector Machine (SVM), 
and Extreme Gradient Boosting (XGBoost), raising several critical points 
that warrant further discussion. Their approach incorporated the Lung 
Performance Optimization (LPO) algorithm to fine-tune the XGBoost 
model’s hyperparameters and utilized 10-fold cross-validation to 
enhance model robustness. The LPO-XGBoost variant achieved the 
highest predictive accuracy (r2 = 0.88), outperforming RF and SVM. 
Feature importance was analyzed using SHapley Additive exPlanations 
(SHAP), offering a detailed interpretation of the factors influencing 
PM10 distribution. However, the variation in feature importance across 
models suggests potential methodological biases, highlighting the need 
for cautious interpretation.

While Liu et al. made a valuable contribution to PM10 assessment, 
their interpretation of feature importance derived from XGBoost, SVM, 
and RF models using SHAP introduces ambiguity. Although they eval
uated predictive performance using metrics such as r2, normalized 
RMSE, and normalized MAE, it is essential to distinguish between pre
diction accuracy and the reliability of feature importance rankings. 
According to existing literature, which includes over 300 peer-reviewed 
studies, high predictive accuracy does not necessarily ensure valid or 

consistent feature importance rankings (Fisher et al., 2019; Lenhof et al., 
2024; Lipton, 2018; Musolf et al., 2022; Wood et al., 2024). Additional 
discussion and references can be found in the supplementary material.

XGBoost, like other tree-based models such as RF, tends to introduce 
bias in feature importance estimation due to its hierarchical structure, 
which often overrepresents features selected in early splits (Adler and 
Painsky, 2022; Alaimo Di Loro et al., 2023; Ugirumurera et al., 2024; 
Salles et al., 2021; Touw et al., 2013). This may distort the perceived 
relevance of environmental variables. Similarly, SVM models are prone 
to bias stemming from their use of kernel transformations, which can 
obscure the interpretability of original features (Faragalli et al., 2025).

Furthermore, while Liu et al. suggest that discrepancies in feature 
importance rankings among XGBoost, SVM, and RF models enhance the 
analytical depth of their study, this interpretation may benefit from 
further clarification. In Section 3.2, Performance comparison among 
models, they explain that each model was trained separately for indi
vidual pollution sources, and that differences in source-species re
lationships and PMF-derived concentration contributions contributed to 
variations in model performance. Although this rationale is under
standable, interpreting such inconsistencies as a unique strength may 
overlook the implications of methodological divergence. The observed 
variability in feature importance across models could reflect underlying 
inconsistencies in identifying key predictors, which may affect the 
interpretability and reliability of the results. Given that each model 
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operates under distinct assumptions and algorithmic biases, a more 
systematic evaluation of feature stability could strengthen the robust
ness of the findings.

Additionally, although SHAP values are designed to clarify feature 
importance, these values can inherit biases from the underlying ML 
models and may, in certain cases, even amplify those biases (Bilodeau 
et al., 2024; Huang and Marques-Silva, 2024; Kumar et al., 2021). This 
dependency is evident in the formulation explain = SHAP(model), 
which directly ties the explanation to the model’s output. As a result, 
SHAP’s interpretability is inherently influenced by the model’s internal 
mechanisms and assumptions, potentially leading to misleading con
clusions. While predictive accuracy remains a central objective in ML, it 
is important to recognize that high accuracy does not necessarily imply 
trustworthy or stable feature importance estimates.

Validating feature importance in ML models is inherently difficult 
due to the absence of ground truth. Different algorithms, such as 
XGBoost and SVM, introduce model-specific biases that result in 
inconsistent rankings. This challenge is particularly evident in Liu 
et al.’s study, where high-dimensional and collinear features complicate 
interpretation and increase the risk of overfitting. In environmental 
research, where data are often noisy and complex, such instability can 
undermine the reliability of model-derived insights. Moreover, SHAP 
values, while widely used for interpretability, are directly dependent on 
model outputs and may inherit or even amplify existing biases. When 
combined with tree-based models like XGBoost, which tend to over
emphasize features used in early splits, this can exacerbate interpret
ability issues. Therefore, claims regarding the identification of 
predictive features using such pipelines should be approached with 
caution, and future studies would benefit from more robust validation 
strategies.

To ensure accurate interpretations in health risk assessment, a robust 
analytical framework is essential. This approach should incorporate 
methodologies better suited for capturing complex associations within 
health data, such as unsupervised learning techniques including Feature 
Agglomeration (FA) and Highly Variable Gene Selection (HVGS) (Zhang 
et al., 2020; Xie et al., 2025). Additionally, non-parametric statistical 
methods like Spearman’s rho or Kendall’s tau would be highly beneficial 
(Okoye and Hosseini, 2024; Yu and Hutson, 2024). These methods can 
detect various types of relationships, offering enhanced interpretability 
crucial for translating findings into actionable clinical insights. Ulti
mately, this multi-faceted approach is indispensable for generating ac
curate, reproducible, and clinically relevant insights that can truly 
advance health risk assessment.

In conclusion, Liu et al. proposed a promising framework for PM10 
source apportionment using ML and SHAP-based interpretation. How
ever, their study presents several methodological challenges, particu
larly regarding the stability of feature importance, model-specific biases, 
and interpretability. Environmental datasets are often noisy and com
plex, which makes it essential to adopt analytical strategies that can 
reliably distinguish meaningful patterns from random variation. Future 
research should consider incorporating unsupervised learning tech
niques and non-parametric statistical methods to improve robustness 
and interpretability. By applying a more comprehensive and cautious 
approach to model evaluation, researchers can enhance the reproduc
ibility, transparency, and utility of their findings for informing envi
ronmental decision-making.
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