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Letter to the Editor

Addressing Bias in machine learning feature importance for food quality assessment
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A B S T R A C T

Li et al. (2025) highlighted Random Forest’s (RF) high accuracy and SHapley Additive exPlanations (SHAP)-
derived feature importance for almond deterioration. However, concerns persist regarding the reliability of these
interpretations, as high predictive accuracy doesn’t guarantee valid feature rankings due to inherent biases in
tree-based models, further amplified by SHAP’s model dependency. To mitigate this, integrating robust statistical
methods such as Spearman’s rho, Kendall’s tau, Total correlation and Effective transfer entropy is crucial for
unbiased assessment. This combined approach ensures a more reliable evaluation of key indicators. Future
research should prioritize methodologies combining machine learning with rigorous statistical validation for
more interpretable and trustworthy insights in complex biological systems. This integrated approach holds
significant promise for improving the reliability of feature importance evaluations, leading to more trustworthy
insights applicable to food science and chemistry fields.

Letter to the Editor:
Li et al. (2025) conducted a study, “Unraveling almonds deteriora-

tion using whole-cell biosensor coupled with machine learning ap-
proaches and SHAP interpretation,” which presents intriguing findings
warranting further discussion. Their work addresses critical research
gaps in food quality assessment, specifically the need for rapid, non-
destructive testing methods capable of capturing changes in chemical
composition related to food deterioration (e.g., almonds) beyond
traditional laboratory-based chemical analysis. Implicitly, their contri-
bution also extends to the broader challenge of developing robust
feature algorithms for complex chemical data, such as that derived from
hyperspectral imaging. Their methodological contributions primarily
include the development of a novel whole-cell biosensor array and its
integration with machine learning (ML) for real-time monitoring and
enhancing interpretability through SHAP. Their study aimed to develop
a real-time method to monitor almond quality using a whole-cell
biosensor array with various ML algorithms, including Linear Discrim-
inant Analysis (LDA), Logistic Regression (LR), Partial Least Squares
Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and
Random Forest (RF). Reporting that Support Vector Machine (97.5 %
accuracy) and Random Forest (100 % accuracy) outperformed linear
models, they focused on interpreting the feature importance of the RF
model using SHAP. Their analysis of the top 10 features highlighted
pspA2, pspA1, rpoS2, and katG9 as particularly influential, with higher
values of these correlating with undeteriorated almonds and lower
values with deteriorated ones. However, relying primarily on RF and its
SHAP interpretation to identify key features introduces potential
methodological biases, representing a notable limitation.

Li et al. (2025) have presented a novel method for monitoring
almond quality; however, their paper raises a critical concern regarding
the interpretation of feature importances derived from ML models and
SHAP analysis. Their study emphasized the high predictive accuracy of
the RF model before proceeding to its SHAP interpretation. While their

work contributes to transparency in understanding model predictions, it
is crucial to acknowledge that high predictive accuracy does not
inherently confirm the reliability of feature importance (Lipton, 2018;
Musolf et al., 2022). While Li et al.’s work seeks to identify key factors
for almond deterioration through feature importance, the reported high
prediction accuracy of RF might inadvertently imply the reliability of
the subsequent SHAP results. As over 300 previous studies have pointed
out, achieving high prediction accuracy does not ensure that feature
importance interpretations are trustworthy (Lenhof et al., 2024; Man-
dler &Weigand, 2024; Potharlanka & Bhat, 2024; Steiner & Kim, 2016;
Wood et al., 2024). Additional discussion and pertinent literature are
provided in the supplementary material.

Tree-based models like RF, while powerful for prediction, can exhibit
biases in feature importance calculations. RF’s internal structure and
splitting logic can lead to skewed feature importance assessments, often
favoring variables utilized early in the tree construction (Mohamed Huti
et al., 2023; Salles et al., 2021; Ugirumurera et al., 2024). Although Li
et al. (2025) employed the Mantel test to evaluate the association be-
tween volatile compounds and promoters, providing evidence for the
biological relevance of specific sensor responses, this statistical analysis
operates independently of the machine learning model’s feature
importance assessment. Consequently, the inherent biases of RF and its
SHAP interpretation present a potential concern, as the model’s learned
relationships may not fully align with the biological correlations iden-
tified through the Mantel test, potentially leading to a skewed inter-
pretation of key deterioration indicators.

Additionally, SHAP values, while intended to elucidate feature
importance, are intrinsically tied to the model they interpret, potentially
reflecting or amplifying the model’s inherent biases (Bilodeau et al.,
2024; Fisher et al., 2019; Huang & Marques-Silva, 2024; Kumar et al.,
2021; Lones, 2024; Molnar et al., 2022). The function of ‘explain =

SHAP(model)’ underscores this dependency. SHAP values can over-
estimate feature importance, especially for features with high variability
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or many discrete categories—properties that inherently inflate SHAP
magnitudes and may skew interpretation. As SHAP relies on the model’s
output for its explanations, its inherent vulnerability to model biases
demands careful interpretation of the results and assessment of the
analysis’s reliability. While other feature analysis methods exist, such as
Permutation Importance, LIME, and Integrated Gradients, offering
varying computational costs and approaches to interpretability, they are
also susceptible to model bias. Despite the existence of these simpler
alternative methods, SHAP is widely utilized as one of the most
consistent frameworks due to its comprehensive game-theoretic princi-
ples and versatility. However, it is important to recognize that all these
methods, including SHAP, are susceptible to model bias, necessitating
careful application to ensure reliable interpretations.

The challenge of validating feature importance is compounded by
the lack of ground truth, as different models can yield varying rankings
due to their distinct methodologies and inherent biases. In Li et al.’s
study, this issue is amplified by the biosensor array’s high dimension-
ality, comprising 72 bioluminescent intensity readings. This large
number of variables, coupled with the potential for collinearity among
these sensor units, can obscure the true relationships within the data.
Consequently, relying solely on the Random Forest model and its SHAP
interpretation makes it difficult to confidently pinpoint the actual de-
terminants of almond deterioration, as the identified feature impor-
tances may be influenced by the model’s specific biases and the complex
interplay of the 72 sensor readings (Touw et al., 2013).

These factors not only complicate the isolation of individual sensor
effects but also diminish the perceived importance of predictive sensors
within the biosensor array. This complexity extends beyond theoretical
considerations, manifesting in practical applications where researchers
may find it challenging to identify the true determinants of almond
deterioration, potentially leading to conclusions about underlying
mechanisms that should be interpreted with caution. Furthermore, the
high dimensionality of the 72 sensor readings increases the risk of
overfitting, causing models to capture noise rather than genuine signals
and to emphasize spurious sensors in importance measures. This is
particularly problematic in biological and agricultural research, which
inherently involves noisy and complex datasets, requiring robust models
that can distinguish between meaningful signals and random fluctua-
tions. Additionally, the complexity of the biosensor array renders
importance measures highly sensitive to minor changes in data or model
configurations, which may affect their stability and reliability. This
instability can complicate the interpretation of model-derived insights
and hinder the development of consistent and reproducible research
findings regarding the key indicators of almond deterioration.

Addressing these limitations necessitates a robust analytical frame-
work that considers data characteristics, inter-variable statistical de-
pendencies, and rigorous validation. Effective modeling hinges on a
thorough grasp of data distribution patterns. Probing intricate variable
associations, particularly via non-parametric techniques, is paramount.
Furthermore, confirming the statistical significance of findings through
hypothesis testing and p-value analysis is vital to avoid misleading
conclusions. Instead of relying exclusively on machine learning models
and SHAP for identifying key features, we propose a synergistic
approach that incorporates impartial, resilient statistical methods, such
as Spearman’s rho and Kendall’s tau, complemented by p-value evalu-
ation (Okoye & Hosseini, 2024; Yu & Hutson, 2024). These non-
parametric tools are especially adept at characterizing monotonic re-
lationships. For more complex dependencies, including non-monotonic
collinearity and interactions, alternative non-parametric methods like
Total correlation and Effective transfer entropy offer valuable insights
(Caserini & Pagnottoni, 2022; Kerby et al., 2024; Tserkis et al., 2025;
Umeki et al., 2025). To enhance interpretability, future research should
adopt robust feature engineering strategies tailored to the biological
nature of the data. Approaches such as feature agglomeration (FA) or
highly variable gene selection (HVGS) offer biologically informed
dimensionality reduction, helping to preserve meaningful variation

while minimizing noise (Xie et al., 2025; Zhang et al., 2020). These
methods can improve model stability and yield more reliable insights
from high-dimensional biosensor data. Prioritizing these statistical
principles will substantially bolster the credibility and dependability of
feature importance assessments, particularly in critical domains like
non-destructive food quality assessment, enabling more robust identi-
fication of deterioration indicators and guiding the development of
advanced techniques such as hyperspectral imaging combined with
reliable feature algorithms. To further explore uncertainty and vari-
ability in feature rankings, researchers might consider constructing
confidence intervals from RF ensemble outputs, which can complement
core statistical methods by offering valuable insights into potential
overfitting, especially in high-dimensional contexts.

In conclusion, while machine learning techniques like Random
Forest and SHAP provide powerful tools for prediction and feature
interpretation, they are not without inherent biases. In complex bio-
logical and agricultural domains like almond quality assessment, a more
robust understanding of the underlying factors requires the integration
of unbiased statistical methods and rigorous validation. This combined
approach, leveraging the strengths of both machine learning and sta-
tistical analysis, is essential for achieving more accurate, reliable, and
interpretable insights into the key indicators of almond deterioration.
Future research should focus on developing and applying such inte-
grated methodologies to enhance our understanding of complex bio-
logical systems.
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