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Aortic Dissection Assessment
To the Editor:

Li et al. proposed a machine learning framework using

Extreme Gradient Boosting (XGBoost) and SHapley Additive

exPlanation (SHAP) to predict the need for continuous renal

replacement therapy after acute type A aortic dissection

repair.1 They developed a predictive model for continuous

renal replacement therapy using multiple clinical and

laboratory variables derived from perioperative data from

588 patients from a single center. After comparative evalua-

tion, XGBoost was selected over other machine learning algo-

rithms due to its superior performance. Subsequently, SHAP

values were used to evaluate feature importance, identifying

key predictors including intraoperative peak lactate level, red

blood cell transfusion volume, renal artery involvement status,

and myoglobin, cystatin C, and creatine kinase-myocardial

band concentrations. Despite the widespread adoption of such

frameworks, it is essential to recognize that high predictive

performance does not guarantee reliable feature rankings. We

believe that inherent biases raise concerns about the reliability

of feature importance. Several studies have highlighted the dis-

cordance between predictive performance and meaningful

attribution, which reinforces the need for rigorous, model-

independent frameworks to support clinically relevant inter-

pretation. Feature importance rankings often reflect artifacts of

the prediction process rather than genuine causal relationships.

Indeed, overreliance on predictive accuracy to justify feature

relevance is a well-documented issue, the details of which are

discussed in the Supplementary Material in detail.2-5

Tree-based machine learning models such as XGBoost are

known to introduce biases in feature importance estimation,

often favoring variables involved in early decision splits.6-10

These importance scores are further shaped by the model’s

internal logic, feature interactions, and multicollinearity.

SHAP, a widely used explainable artificial intelligence tech-

nique, inherits these model-specific biases and may even

amplify them due to its dependence on the model’s output

structure.11,12 Consequently, the combined use of XGBoost

and SHAP can result in interpretability challenges. This issue

may be particularly pronounced in high-dimensional datasets
with complex and correlated features, where overfitting

becomes more likely and model reliability diminishes. We

believe that claims of successful feature identification under

such conditions, especially when accounting for nonlinearity

and interactions, should be carefully examined in light of these

limitations. Moreover, validating feature importance remains

inherently difficult due to the lack of ground truth, which leads

to inconsistent rankings across models. In Li et al.’s study, the

presence of intricate feature relationships and data sensitivity

further complicates interpretation, highlighting the need for

cautious analysis and robust methodological design.

To ensure accurate interpretations in health risk assessment,

a robust analytical framework is essential. This approach

should incorporate methodologies better suited for capturing

complex associations within health data, such as unsupervised

learning techniques including feature agglomeration and

highly variable gene selection.13,14 The use of nonparametric

statistical methods like Spearman’s rho or Kendall’s tau would

most likely also be highly beneficial.15,16 These methods can

detect various types of relationships, offering enhanced

interpretability crucial for translating findings into actionable

clinical insights. Ultimately, this multifaceted approach is

indispensable for generating accurate, reproducible, and clini-

cally relevant information that can truly advance health risk

assessment.
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