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Towards Reliable Feature Importance in
Hashimoto’s Thyroiditis Prediction:
Reconstructing Machine Learning
Frameworks
Chen et al. (2025) proposed a machine learning (ML) framework
using XGBoost and SHapley Additive exPlanation (SHAP) for predicting
Hashimoto’s Thyroiditis (HT) stages [1]. While their study makes a valu-
able contribution, further constructive discussion on the interpretation
of feature importance could help drive further advancement. For identi-
fying stage-specific HT predictors, they analyzed 137 features (radiomic,
clinical, and laboratory variables) derived from a patient cohort and
their ultrasound images. XGBoost was selected over other ML algorithms
like logistic regression, random forest, support vector machine, k-nearest
neighbor, and artificial neural network due to its superior perfor-
mance, achieving 95.8% accuracy and an AUROC of 0.947 on the
test dataset. SHAP values were then used to evaluate feature impor-
tance, identifying key predictors such as first-order features from
transverse ultrasound images, texture feature gray-level run length
matrix from longitudinal views, and free thyroxine levels. Despite
the widespread adoption of such frameworks, it is essential to recog-
nize that high predictive performance does not guarantee reliable
feature rankings. Inherent biases raise substantial concerns about
the reliability of feature importance.

Numerous studies have highlighted the disconnect between predic-
tive performance and meaningful attribution, reinforcing the need for
rigorous, model-independent frameworks to support reproducible dis-
covery and clinically relevant interpretation. Feature importance rank-
ings often reflect artifacts of the prediction process rather than genuine
causal relationships. Over-reliance on predictive accuracy to justify fea-
ture relevance is a well-documented issue, supported by over 300 peer-
reviewed studies [2−5]. Details are discussed in the Supplementary
Material.

XGBoost, like other tree-based ML models, has inherent biases in
feature importance calculations, often overemphasizing features used
in earlier splits [6−10]. These scores are also influenced by the mod-
el’s splitting logic, feature interactions, and multicollinearity. SHAP
values, a popular eXplainable AI (XAI) method, inherit and can
worsen these biases because SHAP’s explanations are directly depen-
dent on the underlying model’s output [11,12]. Therefore, relying on
an XGBoost-SHAP pipeline combines two inherently biased methods,
a common pitfall that can severely exacerbate interpretability issues
and undermine the reliability of the analysis. The claim that this
pipeline successfully identified predictive features, even with nonlin-
earity and interactions, warrants rigorous scrutiny given these com-
pounded biases. Validating feature importance is inherently
challenging due to the absence of ground truth, leading to model-spe-
cific biases and inconsistent rankings. In Chen et al.’s study, complex
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features, high dimensionality, and collinearity hinder ML interpreta-
tion for HT stage risk, increasing overfitting and reducing reliability
due to sensitivity to small data or model changes.

To ensure accurate interpretations in health risk assessment, a robust
analytical framework is essential. This approach should incorporate
methodologies better suited for capturing complex associations within
health data, such as unsupervised learning techniques including Feature
Agglomeration (FA) and Highly Variable Gene Selection (HVGS)
[13,14]. Additionally, non-parametric statistical methods like Spear-
man’s rho or Kendall’s tau would be highly beneficial [15,16]. These
methods can detect various types of relationships, offering enhanced
interpretability crucial for translating findings into actionable clinical
insights. Ultimately, this multi-faceted approach is indispensable for
generating accurate, reproducible, and clinically relevant insights that
can truly advance health risk assessment.
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