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Letter to the Editor

Comments on "Dialogue between algorithms and soil: Machine learning unravels the mystery of 
phthalates pollution in soil" by Pan et al. (2025)

H I G H L I G H T S

• MLP excels in PAE pollution prediction despite model biases.
• ML models (XGBoost, MLP, SVR) have inherent feature biases.
• SHAP inherits and may amplify model-derived feature biases.
• Prediction accuracy varies from feature importance reliability.
• Robust statistics enhance feature reliability.

A R T I C L E  I N F O

Keywords:
Phthalates pollution
Feature selection
Machine learning
SHapley Additive exPlanations
Biases

A B S T R A C T

Pan et al. demonstrated the superior predictive performance of their machine learning ML models for soil 
phthalate PAE concentrations, highlighting the critical role of feature importance as assessed by SHapley Ad
ditive exPlanations (SHAP). Notably, the Multilayer Perceptron (MLP) model achieved the highest performance 
(R² = 0.8637), followed by SVR and XGBoost. However, concerns persist regarding the reliability of feature 
importance derived from these models and their SHAP interpretations. Specifically, predictive accuracy does not 
guarantee the validity of feature rankings due to the inherent biases present in tree-based, neural network, and 
kernel-based methods, which are further exacerbated by SHAP’s inherent dependency on model outputs. To 
mitigate these biases, integrating robust statistical methods is crucial. Techniques such as Spearman’s rho, 
Kendall’s tau, Goodman-Kruskal’s gamma, Somers’ delta, and Hoeffding’s dependence, combined with p-value 
analysis, offer unbiased assessments. Integrating these statistical methods alongside ML models ensures a more 
reliable evaluation of feature importance in environmental risk modeling. Consequently, future research should 
prioritize methodologies that combine ML with rigorous statistical validation to enhance accuracy and reduce 
biases.

1. Text

Letter to the Editor:
Pan et al. [16] conducted a study, "Dialogue between algorithms and 

soil: Machine learning unravels the mystery of phthalates pollution in 
soil," which presents critical points warranting further discussion. Their 
study aimed to predict the concentrations of phthalates (PAEs) in soil 
using various machine learning (ML) models, including Random Forest 
Regression (RFR), Gradient Boosting Regression Tree (GBRT), Extreme 
Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Support 
Vector Regression (SVR), and k-Nearest Neighbors (KNN). Their study 
found that the MLP model exhibited optimal performance (R² of 
0.8637), followed by SVR (R² of 0.8132) and XGBoost (R² of 0.8096). 
The ranking of feature importance elements was assessed using SHapley 
Additive exPlanations (SHAP), providing a comprehensive interpreta
tion of the factors influencing PAEs distribution. However, the distinct 
feature importances generated by different models like XGBoost, MLP, 
and SVR through SHAP suggest that their methodologies may be biased, 
which is not a trivial issue.

While this letter acknowledges a significant contribution to the field 
of PAEs assessment by Pan et al. [16], it raises critical concerns 
regarding the interpretation of feature importances derived from three 
machine learning models (XGBoost, MLP, SVR) and SHAP. They 
assessed predictive accuracy considering several metrics such as R², 
MSE, and MAE. However, it is crucial to recognize that predictive ac
curacy and feature importance are fundamentally distinct concepts, and 
high predictive accuracy does not inherently guarantee the reliability of 
feature importance. Pan et al.’s research aims to explore feature-PAE 
concentration relationships via feature importance, yet the high pre
diction accuracy demonstrated at the outset may imply reliability in the 
subsequent SHAP interpretation. While many similar papers follow this 
pattern, the main point of this letter is that high prediction accuracy 
does not guarantee the reliability of feature importance interpretation. 
This pitfall has already been pointed out in over 100 peer-reviewed 
papers, with Lipton’s article serving as an essential introduction to the 
fundamental issues [8,9,11,17,21]. A detailed discussion and supporting 
references are provided in the supplementary material.

XGBoost, like other tree-based models such as RFR and GBDT, 
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exhibits inherent biases in feature importance calculations due to its tree 
building process, which can overemphasize the importance of features 
used in earlier splits [1,2,19]. This could lead to a skewed perception of 
environmental factors’ importance. MLP deep learning models also 
intrinsically possess non-negligible biases due to their complex archi
tectures and the way they learn feature representations [5]. Addition
ally, SVR can exhibit biases due to its reliance on kernel methods, which 
transform the input space in ways that can obscure the true importance 
of original features [4].

Furthermore, Pan et al. claim that the divergence in feature impor
tance rankings across XGBoost, MLP, and SVR enhances the value of the 
analysis, which warrants careful interpretation. In Section 3.3, ’Identi
fication of the important feature, ’ they state: “The variations among 
these models not only reflected the complexity of PAEs behavior in soil 
but also highlighted each algorithm’s unique advantages in processing 
non-linear relationships and feature interactions. Although different key 
features were identified by each model, the significant influences of 
meteorological conditions, soil characteristics, and anthropogenic fac
tors on PAEs distribution were collectively indicated, wherein the 
complexity of PAEs behavior in the environment was reflected.” Their 
assertion that these inconsistencies are ’unique advantages’ often raises 
further concerns. Indeed, such model discrepancies are not always 
epistemologically problematic; when multiple valid relationships or 
interactions exist within the data, different models capturing different 
aspects can contribute to a more comprehensive understanding. How
ever, in this particular study, where the rankings of key features differ 
significantly and the reasons for these differences are not clearly 
demonstrated, these inconsistencies complicate the determination of 
truly important features. Especially when high predictive accuracy is 
observed alongside significant variability in feature importance, it may 
simply indicate that the models are making predictions based on 
different mechanisms, thus necessitating cautious interpretation.

Additionally, SHAP values, while intended to elucidate feature 
importance, inherit and may even exacerbate biases from the underlying 
machine learning model [10,3,6,7]. The function of ’explain = SHAP 
(model)’ underscores this dependency. As SHAP relies on the model’s 
output for its explanations, its inherent vulnerability to model biases 
demands careful interpretation of the results and assessment of the 
analysis’s reliability. Several feature analysis methods exist besides 
SHAP, offering the advantage of lower computational cost. For example, 
Permutation Importance evaluates feature importance by randomly 
shuffling the values of each feature and measuring the impact on the 
model’s performance. Local Interpretable Model-agnostic Explanations 
(LIME) generates local surrogate models to explain individual pre
dictions, providing insights into the model’s local behavior. Integrated 
Gradients is designed for deep learning models, attributing the model’s 
predictions to input features by calculating gradients along the path 
from a baseline input to the actual input. Despite the existence of these 
simpler alternative methods, SHAP is widely utilized as one of the most 
consistent frameworks due to its comprehensive game-theoretic princi
ples and versatility. However, it is important to recognize that all these 
methods, including SHAP, are susceptible to model bias, necessitating 
careful application to ensure reliable interpretations. While there are 
bias mitigation methods, they cannot completely eliminate biases in 
feature importances derived from ML models.

The crux of the matter is that validating feature importance is 
exceptionally challenging due to the absence of ground truth values, as 
different models employ distinct methodologies, inevitably leading to 
model-specific biases and varying rankings [13]. This issue is particu
larly noticeable in Pan et al.’s study, given their complex feature sets. 
High dimensionality and potential collinearity significantly impede the 
interpretation of machine learning models, especially in the context of 
PAEs assessment [18].

These factors not only complicate the isolation of individual feature 
effects but also diminish the perceived importance of predictive vari
ables. This complexity extends beyond theoretical considerations, 

manifesting in practical applications where researchers may find it 
challenging to identify the true determinants of PAEs assessment, 
potentially leading to conclusions about underlying mechanisms that 
should be interpreted with caution. Furthermore, high dimensionality 
increases the risk of overfitting, causing models to capture noise rather 
than genuine signals and to emphasize spurious features in importance 
measures. This is particularly problematic in environmental research, 
which inherently involves noisy and complex datasets, requiring robust 
models that can distinguish between meaningful signals and random 
fluctuations. Additionally, the complexity of features renders impor
tance measures highly sensitive to minor changes in data or model 
configurations, which may affect their stability and reliability. This 
instability can complicate the interpretation of model-derived insights 
and hinder the development of consistent and reproducible research 
findings.

Addressing these limitations demands attention to three key areas: 
the nature of data distribution, the statistical relationships between 
variables, and the statistical validation. Understanding data distribution 
is essential for choosing effective modeling strategies. Investigating 
complex relationships, particularly through non-parametric methods, is 
vital. Furthermore, validating findings statistically, using hypothesis 
testing and p-value analysis, guarantees that results are not coincidental. 
These three aspects are comprehensively addressed by robust statistical 
methods. Instead of relying solely on machine learning models and 
SHAP for feature selection, we advocate for the integration of unbiased, 
robust statistical methods, such as Spearman’s rho and Kendall’s tau, 
coupled with p-values [15,20]. These are particularly well-suited for 
assessing monotonic relationships. Other suitable non-parametric 
methods include Goodman-Kruskal’s gamma, Somers’ delta, and 
Hoeffding’s dependence, effective for complex relationships like 
non-monotonic collinearity and interactions [12,14]. By prioritizing 
these statistical principles, researchers can enhance the reliability and 
validity of feature importance assessments in environmental risk 
modeling.

In conclusion, while machine learning techniques such as XGBoost, 
MLP, SVR and SHAP are powerful for feature selection, they possess 
inherent biases. In complex domains like environmental risk assessment, 
integrating robust statistical methods and rigorous validation is essential 
to complement machine learning’s limitations. This integrated approach 
is crucial for achieving accurate and reliable insights. Future research 
should prioritize exploring innovative methodologies that combine the 
strengths of machine learning and statistical analysis.
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jhazmat.2025.138366.
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