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Letter to the editor

The recent paper by Godasiaei et al. in Building and Environment, 
"Integrating experimental analysis and machine learning for enhancing 
energy efficiency and indoor air quality in educational buildings," makes 
a valuable contribution to the management of energy efficiency and 
indoor air quality [1]. Their study addressed the challenge of balancing 
energy consumption with indoor air quality (IAQ) through experimental 
analysis integrated with advanced machine learning (ML) techniques. 
They evaluated the potential of ML models, including Recurrent Neural 
Networks (RNN), Long Short-Term Memory Networks (LSTM), Gated 
Recurrent Units (GRU), and Convolutional Neural Networks (CNN), for 
enhancing energy efficiency and indoor air quality. However, the reli-
ance on complex machine learning (ML) models and the interpretation 
of feature influence using SHAP warrants further discussion.

Godasiaei et al. employed RNN, LSTM, GRU, and CNN models using a 
dataset of over 35,000 records to predict IAQ and HVAC energy effi-
ciency optimization in real-time. They reported robust performance, 
with the GRU model achieving an R2 value of 0.973 and a Mean Ab-
solute Error (MAE) of 0.291. The LSTM model also showed strong per-
formance with an R2 of 0.925 and an MAE of 0.309. Overall, the 
predictive models achieved over 92 % accuracy, enabling precise real- 
time HVAC control. Beyond evaluating model performance, a key 
aspect of their work involved interpretability analysis using SHAP 
values, revealing influential parameters such as CO2 levels, outdoor air 
temperature, and HCHO. While this approach selects the best- 
performing model based on prediction accuracy, it implicitly assumes 
that the interpretability of this chosen model is also superior or more 
reliable. Nevertheless, high predictive accuracy alone doesn’t guarantee 
reliable feature importance, a limitation broadly acknowledged in over 
300 studies [2,3]. Further details are available in the supplementary 
material.

The challenge of definitively determining feature importance in 
complex machine learning models is significant. While recurrent models 
such as RNN, LSTM, and GRU are powerful predictive tools, their 
intricate architectures often create learned representations closely tied 
to specific training data. This means high prediction accuracy doesn’t 

automatically validate the reliability of derived importances. It is crucial 
to distinguish between target prediction accuracy and feature impor-
tance accuracy (or reliability); the former does not inherently guarantee 
the latter. Specifically for the GRU model, its recurrent nature and in-
ternal gating mechanisms capture complex temporal dependencies. 
However, these very mechanisms introduce significant biases into its 
feature importance assessments. The primary bias in GRUs stems from 
the intricate propagation of information across sequential time steps and 
through multiple, non-linear internal transformations [4,5]. This inter-
woven flow means individual feature influence is distributed, ambig-
uous, and highly context-dependent, making it exceedingly difficult to 
pinpoint precise contributions. Moreover, issues like the vanishing 
gradient problem introduce a critical temporal bias, implicitly down-
playing the importance of significant features from earlier time steps as 
their influence diminishes during training. This algorithmic predispo-
sition to distort feature contributions poses substantial methodological 
hurdles for accurate interpretation.

This concern extends to interpretation methods like SHAP. While 
these values are intended to elucidate feature influence, they are 
intrinsically tied to the model they interpret, potentially reflecting or 
amplifying its inherent characteristics. The function ’explain = SHAP 
(model)’ underscores this dependency. Consequently, when such 
methods are applied to the unreliable GRU model, their explanations 
fundamentally reflect the GRU’s abstract temporal logic and internal 
states, rather than clear, direct causal relationships in the system. As 
they rely on the model’s output for explanations, their vulnerability to 
model nuances demands careful interpretation. Despite SHAP’s wide-
spread adoption, its fundamental dependency means it acts as a mirror, 
reflecting and potentially amplifying the biases of the model it explains. 
Therefore, relying solely on these values derived from complex ML 
models to determine true feature importance is problematic, as current 
techniques cannot fully eliminate inherent bias [6,7].

Validating feature influence is difficult due to the lack of ground 
truth, as different models yield varying insights based on their meth-
odologies. This issue worsens when interpretation relies mainly on a 
single ’best-performing’ model selected for prediction accuracy, poten-
tially overlooking alternative perspectives. In Godasiaei et al.’s study, 
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the multivariate nature of environmental sensor data and variable in-
terdependencies further obscure true relationships. Thus, model- 
dependent interpretations hinder confident identification of actual de-
terminants of energy efficiency and IAQ, as feature influences may 
reflect model-specific biases and complex sensor interactions. These 
factors show interpretability measures are sensitive to model configu-
rations, affecting reliability.

To effectively transcend these limitations, a robust analytical para-
digm is imperative, one that intrinsically links data characteristics with 
the statistical fabric of variable relationships and stringent validation. 
True mastery in modeling and interpretation demands an acute grasp of 
the core environmental and building processes driving energy efficiency 
and IAQ. It is paramount to unearth complex associations, particularly 
through non-parametric methods. Moreover, establishing the statistical 
significance of findings remains crucial to avert specious conclusions. 
Instead of solely relying on complex ML models and their embedded 
interpretability tools like SHAP to identify key drivers and understand 
model behavior, we champion a synergistic framework. This framework 
marries the predictive might of machine learning with impartial and 
rigorous statistical methodologies. Such methods include Spearman’s 
rho and Kendall’s tau, exceptionally suited for dissecting monotonic 
relationships [8]. For plumbing the depths of more intricate de-
pendencies, including non-monotonic interactions, non-parametric av-
enues like Mutual Information and Total Correlation offer profound 
insights [9,10]. Elevating these foundational statistical principles, in 
conjunction with ML and domain expertise, will profoundly enhance the 
veracity and trustworthiness of feature influence and model behavior 
assessments within building and environmental engineering contexts.

In conclusion, Godasiaei et al.’s study provides valuable models and 
identifies features relevant to energy efficiency and IAQ optimization 
through ML and SHAP analysis. While insightful, interpreting these 
features as definitive drivers in complex environmental systems requires 
careful consideration of methodological limitations and validation 
challenges. To better understand complex building performance out-
comes like energy efficiency and IAQ, we must move beyond model- 
dependent interpretations. A more robust approach integrates ma-
chine learning’s predictive power with complementary, rigorous sta-
tistical methods, offering a more reliable foundation for interpreting 
feature influence and system behavior.
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