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To the Editor,
Migni et al. investigated the restorative effects of melatonin on
the lipidome of human hepatocytes exposed to cadmium (Cd)
and lipotoxicity induced by free fatty acids [1]. Their analysis
utilized MetaboAnalyst 6.0, implementing both principal
component analysis (PCA) and partial least squares‐
discriminant analysis (PLS‐DA) to examine the data. Lipid
species with a variable importance in projection (VIP) score
exceeding one were selected to highlight melatonin's overall
impact on the cellular lipid profile. Additionally, pairwise
comparisons of lipid expression across various treatments
were conducted using an FDR‐corrected moderated t‐test
(adjusted p< 0.01, fold change cutoff = 1.5). The significantly
modulated lipids were visualized through volcano plots, and
the overall lipid composition was depicted in dot charts
mapping the number of carbon atoms and double bonds across
each lipid class [1].

This study underscores important theoretical concerns regarding
the reliance on PCA and PLS‐DA, both of which are predicated
on linear assumptions that may result in misleading interpreta-
tions when applied to biological data characterized by nonlinear
and nonparametric relationships. When linear methodologies are
misapplied to nonlinear data or when parametric models are
inappropriately used for nonparametric analysis, the resulting
interpretations can become flawed and distorted [2–9]. It is
crucial for researchers, including Migni et al., to have a solid
understanding of the fundamental theoretical principles under-
lying the data analysis tools they employ. Violations of these
analytical assumptions can compromise the reliability and
validity of their findings.

PCA fundamentally assumes that relationships among variables
are linear, that the data is centered (mean of zero) and ideally
standardized (unit variance), and that the principal components
effectively capture the data's variability. It also presumes inde-
pendence among observations and that the scales of variables
do not disproportionately influence the results, emphasizing the
need for proper scaling when dealing with variables of different
units. Furthermore, PCA presupposes that latent principal
components account for the observed variance, typically ex-
hibiting characteristics of normal distribution, although strict
adherence to normality is not required. Misapplying PCA to
nonlinear, nonparametric data can severely undermine the
validity of the conclusions drawn due to breaches of these
foundational assumptions [2–5].

In a similar vein, PLS‐DA relies on several essential assump-
tions: linear relationships among variables, independence of
observations, normality of residuals, homoscedasticity of vari-
ances, a sufficiently large sample size, additivity of predictor
effects, appropriate data scaling, and the absence of measure-
ment error in predictor variables. When PLS‐DA is applied to
nonlinear, nonparametric data, the outcomes may also be dis-
torted [6–9]. Researchers must remain vigilant in recognizing
these assumptions to ensure the robustness and accuracy of
their analyses.

To address these limitations for true associations between vari-
ables, this paper recommends the use of nonlinear non-
parametric robust methods such as total correlation (TC) [10, 11]
and effective transfer entropy (ETE) [12, 13]. These advanced
techniques are adept at capturing complex interactions among
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multiple variables, especially when those interactions exhibit
nonmonotonic patterns that traditional methods may overlook.
TC, for instance, allows for a more comprehensive understanding
of dependencies between variables by assessing the total amount
of information shared among them, rather than merely focusing
on pairwise correlations. ETE further enhances this framework
by quantifying the directed information flow between variables,
thereby providing insights into causal relationships. By employ-
ing these methods, researchers can obtain a more nuanced and
accurate analysis of biological systems, leading to a better un-
derstanding of the underlying mechanisms and interactions that
govern cellular responses to various stimuli.
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