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A B S T R A C T

This study examines demographic factors influencing recidivism within the context of global urban transitions. 
Analyzing data from the U.S., where recidivism costs 41 states over $8 billion annually, we employed Chi- 
squared tests and random forest analyses to identify significant predictors. Our findings reveal that 
geographic location—particularly in urbanizing areas—and age significantly impact recidivism rates, while 
gender has minimal influence. These patterns likely extend to both developing and developed nations experi-
encing similar demographic shifts. Our methodological comparison between statistical and machine learning 
approaches provides a transferable framework for international researchers. The study contributes novel insights 
by demonstrating how urbanization's economic, social, and infrastructural dynamics affect reoffending patterns 
across diverse contexts. We recommend policymakers worldwide implement location-specific and age-targeted 
interventions while establishing collaborative platforms to share evidence-based strategies, addressing re-
cidivism's universal challenges regardless of national boundaries.

1. Introduction

Many are unaware of the immense financial burden that recidivism 
places on our communities. According to the Council of State Govern-
ments (CSG justice center, n.d.), in 2021 alone, 41 states spent over $8 
billion incarcerating more than 19,300 individuals for supervision vio-
lations and revocations. In ten of those states, the annual cost of recid-
ivism exceeded $40 per resident. This paper examines the influence of 
demographic factors on these costs, utilizing statistical analysis and 
machine learning techniques to assess feature importance.

Researchers in social science and urban governance frequently lack 
comprehensive understanding of machine learning principles. This 
knowledge gap significantly impacts their work, particularly regarding 
the interpretation of data-driven insights informing policy decisions. 
While machine learning in urban governance aims to predict outcomes 
based on established indicators, feature importances attempt to clarify 
relationships between outcomes and features that often lack direct 
ground truth validation.

A persistent misconception suggests that feature importances 
derived from machine learning models represent unbiased indicators of 

genuine associations within urban datasets. This misunderstanding can 
lead to erroneous conclusions, potentially distorting policy outcomes 
with detrimental effects on urban planning and community welfare. 
Over 100 peer-reviewed articles have documented significant biases 
associated with feature importances across various domains including 
urban studies (Takefuji, n.d.; Takefuji, 2024a; Takefuji, 2024b; Takefuji, 
2024c; Takefuji, 2024d; Takefuji, 2024e; Takefuji, 2024f; Takefuji, 
2025a; Takefuji, 2025b; Takefuji, 2025c).

Despite numerous mitigation strategies addressing these biases, no 
single method completely eliminates bias in feature importances. Each 
approach provides limited bias reduction, requiring urban researchers 
and policymakers to remain vigilant and employ multiple strategies to 
enhance finding reliability. This challenge highlights the complexity of 
accurately capturing true associations within urban data landscapes, 
necessitating thoughtful integration of machine learning with tradi-
tional statistical methodologies.

Different machine learning models employ diverse methodologies 
for calculating feature importance, introducing varying degrees of bias. 
Some models prioritize highly correlated features while others disregard 
them, potentially resulting in misleading interpretations. Consequently, 
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researchers may draw erroneous inferences regarding data relation-
ships, compromising finding validity. Addressing this issue requires 
deeper understanding of machine learning techniques and their 
implications.

To accurately calculate associations between target variables and 
features, three essential elements must be considered: data distribution, 
examination of statistical relationships among variables, and assessment 
of statistical validity through p-values. This paper addresses concerns 
with over-reliance on feature importances derived from machine 
learning models and advocates for bias-free rigorous statistical methods 
such as Chi-squared tests with p-values to uncover true associations.

Recidivism is influenced by various factors in urban ecosystems. 
Cities offer job opportunities and educational resources often inacces-
sible due to stigma and insufficient support, leading to economic 
instability—a key recidivism predictor. Strong social support networks 
can reduce reoffending, yet weakened ties in densely populated areas 
may contribute to higher rates. Stable housing remains crucial, but high 
rent and shortages present significant challenges. Although urban areas 
provide more resources for mental health and substance abuse treat-
ment, barriers including cost and stigma frequently impede access.

This paper examines relationships between recidivism and inde-
pendent variables including gender, county, and age using two analyt-
ical approaches: Chi-squared tests with p-values and feature importances 
derived from random forests. While machine learning focuses on pre-
diction accuracy, feature importances aim to represent associations 
between target and independent variables. However, model-specific 
characteristics cause feature importances to vary significantly between 
models, introducing potential bias.

Feature importances in machine learning are model-specific because 
they derive from the internal workings of particular models (Saarela and 
Jauhiainen, 2021). Different models calculate importance through 
unique methods, leading to variations in scores assigned to identical 
features. Decision trees calculate importance based on impurity reduc-
tion, while linear models use feature coefficients. Models like random 
forests capture complex interactions affecting importance scores (Cava 
et al., 2020).

These scores can be influenced by model bias and variance 
(Michelucci, 2024) and don't necessarily reflect causal relationships but 
rather how features contribute to predictions. They reflect correlations 
rather than causation, with confounding variables potentially distorting 
importance scores. Different models make different assumptions about 
data, affecting importance scores and making them specific to models 
rather than reflecting true associations (Michelucci, 2024; Theng and 
Bhoyar, 2024). Although feature importances have been used in 
numerous studies (Erion et al., 2021; Nichols et al., 2024; Slack et al., 
2023; Tang et al., 2024; Wan et al., 2024; Ziegenfeuter et al., 2024), they 
don't represent true associations between variables.

True associations between variables can be computed using Chi- 
squared tests or similar methods (Ko et al., 2024; McCarthy et al., 
2008). The Chi-squared test determines significant associations between 
categorical variables by comparing observed frequencies with expected 
frequencies, identifying meaningful deviations and assessing variable 
independence. When testing shows significance, one variable's value 
depends on another's. Designed specifically for categorical data, the test 
provides p-values indicating statistical significance, with low values 
suggesting strong associations.

This paper investigates associations between recidivism (y) and 
features (X = (x1, x2, x3)): county, gender, and age. Chi-squared tests 
quantify these associations with p-values, evaluating statistical signifi-
cance between the dependent variable and each predictor. Additionally, 
random forest algorithms generate feature importances for all variables. 
This dual approach combines statistical significance with machine 
learning insights for comprehensive recidivism analysis, while 
acknowledging that no universal tool exists to calculate true variable 
associations.

2. Methods

This paper presents a concise analysis of recidivism trends using both 
the Chi-squared test and Random Forest Classification. The analysis is 
conducted based on a dataset, Recidivism__Beginning_2008.csv, from 
the State of New York, released on July 26, 2024, which comprises 
287,139 instances and 5 variables which may be the largest dataset on 
recidivism in the world (Data.Gov, n.d.). This study aims to identify 
significant patterns and predictors of recidivism, providing valuable 
insights for policymakers and researchers. The dependent variable, 
‘Return Status’ of recidivism, is selected as the target, while ‘County’, 
‘Gender’, and ‘Age’ are considered independent variables. This paper 
analyzes the associations between the target and these independent 
variables.

Generative AI is used and demonstrated to assist novices and non- 
programmers in generating Python code. Due to the inherent imper-
fections of generative AI, multiple interactions and user verification are 
necessary to achieve successful and desired outcomes. Before crafting 
queries, users should be familiar with the dataset and variables. The 
following initial inputs (queries) are provided to the Copilot of genera-
tive AI: single-quoted strings represent variables, while double-quoted 
strings indicate values. The final Python code was verified by experts 
to ensure the outcomes and conclusions.

Chi-squared query: use Recidivism__Beginning_2008.csv file. 
‘Release Year’ indicates year. ‘County of Indictment’ indicates county 
names. Remove “UNKNOWN” from ‘County of Indictment’ values. 
‘Gender’ indicates “MALE” or “FEMALE”. ‘Age at Release’ indicates age 
values. ‘Return Status’ indicates outcomes in strings. Calculate chi- 
squared and p-value of 3 associations between ‘Return Status’ and 
‘County of Indictment’, that between ‘Return Status’ and ‘Gender’, and 
that between ‘Return Status’ and ‘Age at Release’ for individual years 
from 2008 to 2020. Plot the trends of 3 black lines of chi-squared and p- 
value with 4 linestyles and 2 widths (1,2). The graph should have 6 
distinct lines with rotating xticks with 90◦. Show Python full code.

Random forest query: use Recidivism__Beginning_2008.csv file. 
‘Release Year’ indicates year. ‘County of Indictment’ indicates county 
names. Remove “UNKNOWN” from ‘County of Indictment’ values. 
‘Gender’ indicates “MALE” or “FEMALE”. ‘Age at Release’ indicates age 
values. ‘Return Status’ indicates outcomes in strings. Use randomforest 
model where y is ‘Return Status’ and X are ‘Release Year’, ‘County of 
Indictment’, ‘Gender’ and ‘Age at Release’. Calculate Chi-squared sta-
tistics, p-values and accuracies for individual years from 2008 to 2020. 
Plot a graph of three values such as Chi-squared value, p-value and ac-
curacy from 2008 to 2020 where right Y-axis indicates Chi-squared 
values and accuracies while left Y-axis indicates p-values. Calculate 
feature importances of year, county, gender and age to influence 

Y. Takefuji                                                                                                                                                                                                                                       Cities 166 (2025) 106207 

2 



Fig. 1. Trends of Chi-squared and p-values.

Fig. 2. Feature importances with random forest algorithms.
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outcomes. Draw a graph of distributions of 4 feature importances from 
2008 to 2020 with 4 linestyles. Show python full code.

3. Results

Download the comma-separated values (CSV) file, referred to as the 
dataset, from the data.gov website (Data.Gov, n.d.). The Python scripts, 
chi.py and rf_fimportances.py, developed using generative AI, are 
available for public access on GitHub to ensure reproducibility, and 
additional details can be found in the Appendix (GitHub, n.d.). After 
downloading the dataset and programs, run these scripts to generate the 
desired results. ($) indicates the prompt from the system terminal.

$ python chi.py
$ python rf_fimportances.py
Fig. 1 illustrates the results of the chi.py analysis, while Fig. 2 pre-

sents the findings from the rf_fimportances.py analysis. In Fig. 1, the p- 
values for county, gender, and age are all zeros, indicating statistical 
significance. In Fig. 1, the associations for county and age hovered 
around the range of 400 to 600 until 2014 with twice intersected. Post- 
2014, the county association showed a marked increase, peaking in 
2018 and then stabilizing. Conversely, the age association exhibited a 
decline from 2013 to 2019, with a slight uptick in 2020.

In Fig. 2, the county association consistently remained higher than 
the age association from 2008 to 2020, with the exception of 2011, 
where the age association briefly surpassed that of the county. These 
trends highlight significant differences in the predictive power of county 
and age over the years. Differences in Fig. 1 and Fig. 2 highlight biases 
introduced by machine learning.

4. Discussion

The results from Fig. 1 and Fig. 2 provide complementary insights 
into factors influencing recidivism globally. Fig. 1, based on chi-squared 
analysis, reveals gender has nearly zero association with recidivism 
rates—a finding consistent with international studies (Ko et al., 2024; 
McCarthy et al., 2008). The increasing chi-squared values for county 
post-2014 indicate that geographical location has become more influ-
ential, reflecting differences in urbanization patterns, socioeconomic 
conditions, and rehabilitation infrastructure that transcend national 
boundaries.

Fig. 2, based on random forest feature importances, confirms these 
patterns while highlighting methodological considerations relevant to 
researchers worldwide. The consistently higher feature importance of 
county compared to age reinforces that geographical factors are uni-
versally significant predictors. This methodological comparison dem-
onstrates how different analytical approaches can yield complementary 
insights applicable across diverse contexts.

The implications extend beyond local policy to international prac-
tice. Our finding that geographical location significantly predicts 
recidivism aligns with global urbanization research, suggesting that 
rapid urban transitions create similar challenges for criminal justice 
systems worldwide. Policymakers internationally should implement 
place-based interventions that address specific urban-rural disparities in 
recidivism rates, regardless of national context.

Similarly, our age-related findings suggest universal life-course pat-
terns in criminal behavior that require targeted interventions. We 
recommend that correctional systems globally develop age-appropriate 

rehabilitation programs while maintaining gender-neutral approaches, 
as our findings indicate gender has minimal impact on recidivism across 
contexts.

For researchers, our methodological comparison between statistical 
and machine learning approaches offers a transferable framework that 
can be adapted to different national datasets. We caution that machine 
learning models generate biased feature importances due to their model- 
specific nature (Lakens, 2022), highlighting the need for methodological 
triangulation in international recidivism research.

Future cross-national research should explore how urbanization 
processes specifically influence recidivism patterns across countries at 
different development stages. We recommend establishing international 
data-sharing protocols and standardized metrics to facilitate compara-
tive analyses. Additionally, policymakers should create forums for 
knowledge exchange regarding successful place-based and age-targeted 
interventions, fostering global collaboration to address the universal 
challenge of reducing recidivism through evidence-based approaches.
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APPENDIX: chi.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import chi2_contingency

# Load the dataset

df = pd.read_csv('Recidivism__Beginning_2008.csv')

# Remove "UNKNOWN" from 'County of Indictment'

df = df[df['County of Indictment'] != 'UNKNOWN']

# Initialize lists to store chi-squared and p-values

chi2_county = []

p_county = []

chi2_gender = []

p_gender = []

chi2_age = []

p_age = []

# Loop through each year from 2008 to 2020

for year in range(2008, 2021):

df_year = df[df['Release Year'] == year]

# Chi-squared test for 'Return Status' and 'County of Indictment'

contingency_table_county = pd.crosstab(df_year['Return Status'], df_year['County of 

Indictment'])

chi2, p, _, _ = chi2_contingency(contingency_table_county)

chi2_county.append(chi2)

p_county.append(p)

# Chi-squared test for 'Return Status' and 'Gender'

contingency_table_gender = pd.crosstab(df_year['Return Status'], df_year['Gender'])

chi2, p, _, _ = chi2_contingency(contingency_table_gender)

chi2_gender.append(chi2)

p_gender.append(p)

# Chi-squared test for 'Return Status' and 'Age at Release'

contingency_table_age = pd.crosstab(df_year['Return Status'], df_year['Age at Release'])

chi2, p, _, _ = chi2_contingency(contingency_table_age)

chi2_age.append(chi2)

p_age.append(p)

# Plot the trends

years = list(range(2008, 2021)) 

 

fig, ax1 = plt.subplots(figsize=(14, 8)) 

 

# Chi-squared values on the left Y-axis 

ax1.plot(years, chi2_county, label='Chi-squared (County)', linestyle='-', linewidth=2, 

color='black') 

ax1.plot(years, chi2_gender, label='Chi-squared (Gender)', linestyle=':', linewidth=2, 

color='black') 

ax1.plot(years, chi2_age, label='Chi-squared (Age)', linestyle='--', linewidth=2, 

color='black') 

ax1.set_xlabel('Year') 

ax1.set_ylabel('Chi-squared Values') 

ax1.tick_params(axis='y') 

 

# P-values on the right Y-axis 

ax2 = ax1.twinx() 

ax2.plot(years, p_county, label='P-value (County)', linestyle='-', linewidth=1, color='black') 

ax2.plot(years, p_gender, label='P-value (Gender)', linestyle=':', linewidth=1, color='black') 

ax2.plot(years, p_age, label='P-value (Age)', linestyle='--', linewidth=1, color='black') 

ax2.axhline(y=0.05, color='red', linestyle=':', linewidth=2, label='Reference Line (0.05)') 

ax2.set_ylabel('P-values') 

ax2.tick_params(axis='y') 

 

# Combine legends 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

ax2.legend(lines + lines2, labels + labels2, loc='upper center', bbox_to_anchor=(0.5, -0.15), 

ncol=3) 

 

plt.title('Trends of Chi-squared and P-values (2008-2020)') 

plt.xticks(years, rotation=90) 

plt.grid(True) 

plt.tight_layout() 

plt.savefig('chi.png',dpi=300) 

plt.show() 

  

APPENDIX: rf_fimportances.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.feature_selection import chi2

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score

# Load the data

df = pd.read_csv('Recidivism__Beginning_2008.csv')

# Data preprocessing

df = df[df['County of Indictment'] != 'UNKNOWN']

df['Gender'] = df['Gender'].map({'MALE': 1, 'FEMALE': 0})

# Encode categorical variables

le_county = LabelEncoder()

df['County of Indictment'] = le_county.fit_transform(df['County of Indictment'])

le_return_status = LabelEncoder()

df['Return Status'] = le_return_status.fit_transform(df['Return Status'])

# Train RandomForest model

X = df[['County of Indictment', 'Gender', 'Age at Release']]

y = df['Return Status']

model = RandomForestClassifier()

model.fit(X, y)

# Calculate feature importances for each year

feature_importances = {feature: [] for feature in ['County of Indictment', 'Gender', 'Age at 

Release']}

for year in range(2008, 2021):

df_year = df[df['Release Year'] == year]

X_year = df_year[['County of Indictment', 'Gender', 'Age at Release']]

y_year = df_year['Return Status']

model.fit(X_year, y_year)

importances = model.feature_importances_

for i, feature in enumerate(feature_importances.keys()):

feature_importances[feature].append(importances[i])

# Plot feature importances

plt.figure(figsize=(12, 8))

linestyles = ['-', '--', '-.', ':']

widths = [1, 2, 1, 2]

for (feature, linestyle, width) in zip(feature_importances.keys(), linestyles, widths):

plt.plot(range(2008, 2021), feature_importances[feature], linestyle=linestyle, 

linewidth=width, label=feature, color='black')

plt.xlabel('Year')

plt.ylabel('Feature Importance')

plt.title('Feature Importances from 2008 to 2020')

plt.legend()

plt.xticks(range(2008, 2021))

plt.savefig('feature-importances.png',dpi=300)

plt.show()
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