
     

         

5520 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025 

 

Volume 13 Issue 08 August 2025, Page no. – 5520-5524 

Index Copernicus ICV: 57.55, Impact Factor: 8.615 

 DOI: 10.47191/ijmcr/v13i8.03 

Bimodality of the Proof Complexity on Boolean Ring 
 

Ruo Ando1, Yoshiyasu Takeuji2 
1National Institute of Informatics, 2 Chome-1-2 Hitotsubashi, Chiyoda City, Tokyo 101-8430 
2Musashino University, 3 Chome-3-3 Ariake, Koto City, Tokyo 135-8181 

 

ARTICLE INFO ABSTRACT 

Published Online: 

05 August 2025 

 

 

 

Corresponding Author: 

Ruo Ando 

In this paper, we present an experiment of complex effects of LRPO on the proof complexity in 

term orderings on algebraic structures. In experiment, we yield 10! lex patterns that are derived 

from the symbols that make up Boolean rings (+, −,×, #,∧, 0, 1, a, b, c).  Also, the given clause 

algorithm is used to measure the proof complexity by counting the number of clauses generated. 

Curiously, the experimental results showed that the distribution the proof complexity was not 

unimodal, but bimodal. We discuss three possible reasons of bimodality of proof complexity in 

algebraic structures. 
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I. INTRODUCTION 

In this paper, the complexity of a proof is defined as the 

number of generated clauses. The generated clauses are 

calculated using the given clause algorithm. The proof derives 

the distributive bundle from the rules of the Boolean ring. A 

Boolean ring and a distributive lattice are closely related 

mathematical structures. In fact, a Boolean ring always forms 

a distributive lattice. 

 

 
 

OTTER [1] adopts given-clause algorithm in which the 

program attempts to use any and all combinations from 

axioms in given clause. In other words, the combinations of 

clause are generated from given clauses which has been 

focused on. 

Figure 1 shows the procedures of the given clause algorithm. 

It takes a set of support and a usable list.  In line 2, the prover 

picks up G (given clause ) from SoS(Set of Support). Two 

while loops are started in lines 4 and 5to attempt any and all 

combinations extracted from the given clause and usable list. 

Readers are encouraged to check [2]  for the basic design of 

given clause algorithm. In anutshell, five steps are taken in the 

given clause algorithm asfollows:1) Choose a clause as the 

given clause from the clauselist of the set of support.2) 

Append the given clause to the usable list.3) Using the 

inference rule or rules for the inference ofall clauses.4) Test 

the retention of newly inferred clause5) Add each yielded new 

clause to the SoS.OTTER selects a clause G from the clause 

set which hasbeen focused on in SoS. In this sense, clause G 

is called agiven clause or focal clause 

 
Figure 1. Given clause algorithm 

 

II. LRPO 

LRPO [3] is a technique for guaranteeing termination in term 

rewriting systems. It is necessary to check that the lefthand 

side of all rewrite rules is greater than the right-hand side, and 

this judgment is directly linked to the proof of the overall 

system’s terminability. If the number of rewrite rules is k, the 

depth of terms is d, and the number of arguments is n, the 

overall computational complexity is O(k n d) at worst. 

Therefore, in order to use LRPO efficiently, it is necessary to 

appropriately limit the depth of terms and the number of 

arguments, and to manage the computational complexity. 

https://doi.org/10.47191/ijmcr/v13i8.03
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Figure 2. LRPO 

 

Figure2 depicts the algorithm of LRPO. From line 1 to line 4, 

the process applies when T1 is a variable. In this case, 

variables are considered smaller than regular terms, so the 

return value in line 1 is 0. In line 4, if the term being compared 

is a variable, an occurrence check is performed. In line 5, when 

T1 and T2 share the same symbol, a function is called to 

compare them argument by argument. Lines 1 to 6 describe 

the handling of variables and cases where terms share the same 

symbol. From line 7 onward, the main comparison process 

is executed. In line 8, symbols are compared, and in line 9, 

if the symbols follow the same order, a function for multiset 

comparison is invoked. Lines 11 to 20 contain the core 

processing procedure. If P is greater than T, this indicates that 

T1 is greater than T2, so the function returns 1. In other words, 

if all arguments of T1 dominate those of T2, the function 

returns 1. Lines 14 to 20 handle cases where P is not ”greater.” 

In line 16, if all arguments of T1 are greater than those of T2, 

this means that T1 dominates T2, and the function returns 1. 

Otherwise, if T1 is smaller than T2, the function returns 0. 

 

III. BOOLEAN RING 

In mathematics, a Boolean ring [4], R is a ring for which x2 

= x for all x in R, that is, a ring that  consists of only 

idempotent elements. An example is the ring of integers 

modulo 2. Every  Boolean ring gives rise to a Boolean 

algebra, with ring multiplication corresponding to 

conjunction or meet , and ring addition to exclusive 

disjunction or symmetric difference (not disjunction, which 

would constitute a semiring). Conversely, every Boolean 

algebra gives rise to a Boolean ring. Boolean rings are named 

after the founder of Boolean algebra, George Boole. 

Key Result 

Since a + a = 0, each element serves as its own additive 

inverse. The addition operation in a Boolean ring corresponds 

to the exclusive OR (XOR) operation in Boolean algebra, 

denoted as: 

 
The multiplication operation corresponds to the logical AND 

operation, expressed as: 

 
If a unit element 1 exists in the ring, it aligns with the standard 

Boolean algebra identity element. 

Example 

The ring Z/2Z = {0, 1} serves as a typical example of a 

Boolean ring, where addition behaves as XOR, and 

multiplication follows the AND operation. Thus, a Boolean 

ring connects the principles of Boolean algebra and ring 

theory, playing a crucial role in logic computation and digital 

circuit design. 

 

IV. EXPERIMENTS 

The proof derives the distributive bundle from the rules of the 

Boolean ring. 

 
This equation represents a case where the distributive 

property does not hold. In other words, it indicates that the 

specific combination of the operations # and ∗ does not satisfy 

the distributive law. 

 
Sos list has Idempotent Law and identity law. Usable list has 

Identity Law, Associative Law, Inverse Law, Commutative 

Law, Associative Law and Distributive Law. 

 
Figure 3 shows the historam of the number of generated 

clauses. Regarding Figure 3, it is labeled Proof Complexity. 

The X-axis represents the amount of calculation calculated by 

OTTER specifically, it is the number of theories generated 

by each inference process that finished within 15 seconds 
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for each pattern. And the Y-axis is the number of generated 

clauses for each. The key point is that this is a bimodal plot, 

not a unimodal one. To be more specific, the largest number 

of generated theories is around 120,000, which is roughly 

335,000 patterns. The next largest number of generated 

theories is around 110,000, which is about 25,000 patterns. 

And the third largest number of generated theories is around 

30,000, which is roughly 180,000 patterns. As you can see, 

the peak in the number of generated theories is divided into 

two groups, or two peaks, and does not form a single peak. 

There are two possible reasons why a single peak is not 

guaranteed here. Firstly, the influence of each sign is not 

homogeneous, secondly, there are complex dependencies 

between signs, and thirdly, there is no universal ordering 

method. 

 
Figure 3. Proof Complexity. Histogram of the number of 

clauses generated. 

 

The explanation regarding Figure 4 illustrates the relationship 

between symbols and computational complexity. The 

horizontal axis represents each part of the symbols, while the 

vertical axis shows the computational complexity. Overall, 

the plotted relationship between computational complexity 

and symbols indicates that the density is not uniformly 

distributed. Some areas are denser than others, suggesting 

that denser regions correspond to types of programs that can 

be computed. Next, when the four symbols and their 

computational complexities are divided into two parts and 

categorized into eight blocks (A to H), it becomes clear that 

the computational complexity for each symbol is not entirely 

symmetrical. Particularly for Symbol 1, significant 

asymmetry is observed in regions such as A and D. As a 

general trend, the first symbol achieves higher computational 

complexity when installed earlier, whereas the third symbol 

reduces computational complexity when installed later. 

However, the overall distribution remains irregular, and this 

irregularity is likely due to interdependencies between the 

symbols. Individually, installing the first symbol at the 

beginning results in higher computational complexity and 

longer execution times. On the other hand, the third symbol 

tends to reduce computational complexity when delayed, 

even though this reduces the number of executable programs. 

This trade-off explains the uneven histogram observed. In 

terms of block combinations, the histogram in Figure 1 can 

be explained using blocks A to H. Specifically, blocks B and 

C contribute to the largest peak, while the second peak is 

likely attributed to another combination of blocks. In any 

case, these eight blocks are neither uniform nor symmetrical, 

which accounts for the non-uniform distribution of 

computational complexity. 

 
Figure 4. Experimental results of LRPO. X is the 

position of signs. Y is the number of clauses generated. 

 

The explanation regarding Figure 4 illustrates the relationship 

between symbols and computational complexity. The 

horizontal axis represents each part of the symbols, while the 

vertical axis shows the computational complexity. Overall, 

the plotted relationship between computational complexity 

and symbols indicates that the density is not uniformly 

distributed. Some areas are denser than others, suggesting 

that denser regions correspond to types of programs that can 

be computed. Next, when the four symbols and their 

computational complexities are divided into two parts and 

categorized into eight blocks (A to H), it becomes clear that 

the computational complexity for each symbol is not entirely 

symmetrical. Particularly for Symbol 1, significant 

asymmetry is observed in regions such as A and D. As a 

general trend, the first symbol achieves higher computational 

complexity when installed earlier, whereas the third symbol 

reduces computational complexity when installed later. 

However, the overall distribution remains irregular, and this 

irregularity is likely due to interdependencies between the 

symbols. Individually, installing the first symbol at the 

beginning results in higher computational complexity and 

longer execution times. On the other hand, the third symbol 

tends to reduce computational complexity when delayed, 

even though this reduces the number of executable programs. 

This trade-off explains the uneven histogram observed. In 

terms of block combinations, the histogram in Figure 1 can 

be explained using blocks A to H. Specifically, blocks B and 

C contribute to the largest peak, while the second peak is 

likely attributed to another combination of blocks. In any 

case, these eight blocks are neither uniform nor symmetrical, 
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which accounts for the non-uniform distribution of 

computational complexity. 

 

V. DISCUSSION 

The experimental results of LRPO turned out to be highly 

complex. Here, we discuss the number of proof clauses, 

focusing on whether the structure exhibits unimodality or 

multimodality in this case, bimodality. There are several 

reasons for this. First, since the placement of symbols 

interacts with each other, it affects the complexity of the 

proof. Therefore, rather than the position of symbols 

independently influencing the proof complexity, the mutual 

interaction of symbol positions contributes to forming such a 

complex multimodal structure. Additionally, as is commonly 

observed, the computational complexity and density of proof 

complexity are not uniform across symbols. Due to the 

superposition of distributions with different densities, the 

structure does not remain unimodal but instead exhibits 

multimodality, and in this case, bimodality. Consequently, a 

linear search approach is unlikely to be effective in 

identifying the optimal lex pattern. In other words, since 

symbols within the lex pattern interact with each other, a 

simple linear search is not particularly effective. To 

determine the optimal symbol placement, that is, the 

arrangement of symbol positions that minimizes proof 

complexity, some form of heuristic approach is likely 

required. 

 

VI. RELATED WORK 

These are the manuscript preparation guidelines used as a 

standard template. Author must follow these instructions and 

ensure that the manuscript is carefully aligned with these 

guidelines including headings, figures, tables and references. 

Manuscripts with poor or no typesetting are not preliminary 

approved and consider for review. The study presented in this 

paper is closely related to several research fields. First, the 

quantification of proof complexity through the number of 

generated clauses aligns with computational complexity 

theory and proof theory. Notable related 

works include Cook’s  ”The complexity of theorem-proving 

procedures” [5] and Buss’s ”Handbook of Proof Theory” [6], 

which explore foundational aspects of proof complexity. 

Second, the research on Labeled Recursive Path Ordering 

(LRPO) and term rewriting systems provides a significant 

background for the efficient handling of computational 

processes. Key studies, such as Dershowitz’s ”Termination of 

rewriting” [7] and Jouannaud and Lescanne’s ”On multiset 

orderings” [8], offer insights into methods ensuring 

termination and efficiency in rewriting systems, directly 

influencing the techniques discussed in this paper. Third, the 

study leverages properties of Boolean rings and their 

algebraic structures. Seminal works like Halmos’s ”Boolean 

algebras” [9] and Huntington’s ”Sets of independent 

postulates for the algebra of logic” [10] investigate the 

relationship between Boolean rings and Boolean algebras, 

providing a mathematical foundation for the algebraic 

characteristics examined in the paper. Fourth, the use of the 

given-clause algorithm, as implemented in the OTTER 

automated theorem-proving system, forms a cornerstone of 

this study. Foundational works such as McCune’s ”OTTER 

3.0 Reference Manual and Guide” [11] and Sutcliffe and 

Suttner’s ”The CADE ATP System Competition” [12] detail 

the algorithm’s framework and its application in automated 

reasoning. Fifth, the analysis of distributions and 

complexities, particularly bimodal distributions, is rooted in 

statistical methodologies. Mitzenmacher’s ”A brief history of 

generative models for power law and lognormal 

distributions” [13] provides a relevant perspective on the 

emergence of non-unimodal distributions, aiding the 

interpretation of the paper’s experimental findings. Finally, 

research on the optimization of symbol orderings and their 

impact on algorithm efficiency is directly relevant. Baader 

and Nipkow’s ”Term Rewriting and All That” [14] 

discusses the role of symbol orderings in improving 

computational processes, mirroring the focus of this paper on 

the complexity associated with arranging ten symbols. These 

areas collectively establish a robust theoretical and 

methodological foundation for the paper’s investigation into 

proof complexity, symbol orderings, and algebraic structures, 

while also offering directions for further exploration 
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