

5520 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025

Volume 13 Issue 08 August 2025, Page no. – 5520-5524

Index Copernicus ICV: 57.55, Impact Factor: 8.615

 DOI: 10.47191/ijmcr/v13i8.03

Bimodality of the Proof Complexity on Boolean Ring

Ruo Ando1, Yoshiyasu Takeuji2
1National Institute of Informatics, 2 Chome-1-2 Hitotsubashi, Chiyoda City, Tokyo 101-8430
2Musashino University, 3 Chome-3-3 Ariake, Koto City, Tokyo 135-8181

ARTICLE INFO ABSTRACT

Published Online:

05 August 2025

Corresponding Author:

Ruo Ando

In this paper, we present an experiment of complex effects of LRPO on the proof complexity in

term orderings on algebraic structures. In experiment, we yield 10! lex patterns that are derived

from the symbols that make up Boolean rings (+, −,×, #,∧, 0, 1, a, b, c). Also, the given clause

algorithm is used to measure the proof complexity by counting the number of clauses generated.

Curiously, the experimental results showed that the distribution the proof complexity was not

unimodal, but bimodal. We discuss three possible reasons of bimodality of proof complexity in

algebraic structures.

KEYWORDS: Proof Complexity, LRPO, Boolean ring, Given clause algorithm, Bimodality

I. INTRODUCTION

In this paper, the complexity of a proof is defined as the

number of generated clauses. The generated clauses are

calculated using the given clause algorithm. The proof derives

the distributive bundle from the rules of the Boolean ring. A

Boolean ring and a distributive lattice are closely related

mathematical structures. In fact, a Boolean ring always forms

a distributive lattice.

OTTER [1] adopts given-clause algorithm in which the

program attempts to use any and all combinations from

axioms in given clause. In other words, the combinations of

clause are generated from given clauses which has been

focused on.

Figure 1 shows the procedures of the given clause algorithm.

It takes a set of support and a usable list. In line 2, the prover

picks up G (given clause) from SoS(Set of Support). Two

while loops are started in lines 4 and 5to attempt any and all

combinations extracted from the given clause and usable list.

Readers are encouraged to check [2] for the basic design of

given clause algorithm. In anutshell, five steps are taken in the

given clause algorithm asfollows:1) Choose a clause as the

given clause from the clauselist of the set of support.2)

Append the given clause to the usable list.3) Using the

inference rule or rules for the inference ofall clauses.4) Test

the retention of newly inferred clause5) Add each yielded new

clause to the SoS.OTTER selects a clause G from the clause

set which hasbeen focused on in SoS. In this sense, clause G

is called agiven clause or focal clause

Figure 1. Given clause algorithm

II. LRPO

LRPO [3] is a technique for guaranteeing termination in term

rewriting systems. It is necessary to check that the lefthand

side of all rewrite rules is greater than the right-hand side, and

this judgment is directly linked to the proof of the overall

system’s terminability. If the number of rewrite rules is k, the

depth of terms is d, and the number of arguments is n, the

overall computational complexity is O(k n d) at worst.

Therefore, in order to use LRPO efficiently, it is necessary to

appropriately limit the depth of terms and the number of

arguments, and to manage the computational complexity.

https://doi.org/10.47191/ijmcr/v13i8.03

“Bimodality of the Proof Complexity on Boolean Ring”

5521 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025

Figure 2. LRPO

Figure2 depicts the algorithm of LRPO. From line 1 to line 4,

the process applies when T1 is a variable. In this case,

variables are considered smaller than regular terms, so the

return value in line 1 is 0. In line 4, if the term being compared

is a variable, an occurrence check is performed. In line 5, when

T1 and T2 share the same symbol, a function is called to

compare them argument by argument. Lines 1 to 6 describe

the handling of variables and cases where terms share the same

symbol. From line 7 onward, the main comparison process

is executed. In line 8, symbols are compared, and in line 9,

if the symbols follow the same order, a function for multiset

comparison is invoked. Lines 11 to 20 contain the core

processing procedure. If P is greater than T, this indicates that

T1 is greater than T2, so the function returns 1. In other words,

if all arguments of T1 dominate those of T2, the function

returns 1. Lines 14 to 20 handle cases where P is not ”greater.”

In line 16, if all arguments of T1 are greater than those of T2,

this means that T1 dominates T2, and the function returns 1.

Otherwise, if T1 is smaller than T2, the function returns 0.

III. BOOLEAN RING

In mathematics, a Boolean ring [4], R is a ring for which x2

= x for all x in R, that is, a ring that consists of only

idempotent elements. An example is the ring of integers

modulo 2. Every Boolean ring gives rise to a Boolean

algebra, with ring multiplication corresponding to

conjunction or meet , and ring addition to exclusive

disjunction or symmetric difference (not disjunction, which

would constitute a semiring). Conversely, every Boolean

algebra gives rise to a Boolean ring. Boolean rings are named

after the founder of Boolean algebra, George Boole.

Key Result

Since a + a = 0, each element serves as its own additive

inverse. The addition operation in a Boolean ring corresponds

to the exclusive OR (XOR) operation in Boolean algebra,

denoted as:

The multiplication operation corresponds to the logical AND

operation, expressed as:

If a unit element 1 exists in the ring, it aligns with the standard

Boolean algebra identity element.

Example

The ring Z/2Z = {0, 1} serves as a typical example of a

Boolean ring, where addition behaves as XOR, and

multiplication follows the AND operation. Thus, a Boolean

ring connects the principles of Boolean algebra and ring

theory, playing a crucial role in logic computation and digital

circuit design.

IV. EXPERIMENTS

The proof derives the distributive bundle from the rules of the

Boolean ring.

This equation represents a case where the distributive

property does not hold. In other words, it indicates that the

specific combination of the operations # and ∗ does not satisfy

the distributive law.

Sos list has Idempotent Law and identity law. Usable list has

Identity Law, Associative Law, Inverse Law, Commutative

Law, Associative Law and Distributive Law.

Figure 3 shows the historam of the number of generated

clauses. Regarding Figure 3, it is labeled Proof Complexity.

The X-axis represents the amount of calculation calculated by

OTTER specifically, it is the number of theories generated

by each inference process that finished within 15 seconds

“Bimodality of the Proof Complexity on Boolean Ring”

5522 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025

for each pattern. And the Y-axis is the number of generated

clauses for each. The key point is that this is a bimodal plot,

not a unimodal one. To be more specific, the largest number

of generated theories is around 120,000, which is roughly

335,000 patterns. The next largest number of generated

theories is around 110,000, which is about 25,000 patterns.

And the third largest number of generated theories is around

30,000, which is roughly 180,000 patterns. As you can see,

the peak in the number of generated theories is divided into

two groups, or two peaks, and does not form a single peak.

There are two possible reasons why a single peak is not

guaranteed here. Firstly, the influence of each sign is not

homogeneous, secondly, there are complex dependencies

between signs, and thirdly, there is no universal ordering

method.

Figure 3. Proof Complexity. Histogram of the number of

clauses generated.

The explanation regarding Figure 4 illustrates the relationship

between symbols and computational complexity. The

horizontal axis represents each part of the symbols, while the

vertical axis shows the computational complexity. Overall,

the plotted relationship between computational complexity

and symbols indicates that the density is not uniformly

distributed. Some areas are denser than others, suggesting

that denser regions correspond to types of programs that can

be computed. Next, when the four symbols and their

computational complexities are divided into two parts and

categorized into eight blocks (A to H), it becomes clear that

the computational complexity for each symbol is not entirely

symmetrical. Particularly for Symbol 1, significant

asymmetry is observed in regions such as A and D. As a

general trend, the first symbol achieves higher computational

complexity when installed earlier, whereas the third symbol

reduces computational complexity when installed later.

However, the overall distribution remains irregular, and this

irregularity is likely due to interdependencies between the

symbols. Individually, installing the first symbol at the

beginning results in higher computational complexity and

longer execution times. On the other hand, the third symbol

tends to reduce computational complexity when delayed,

even though this reduces the number of executable programs.

This trade-off explains the uneven histogram observed. In

terms of block combinations, the histogram in Figure 1 can

be explained using blocks A to H. Specifically, blocks B and

C contribute to the largest peak, while the second peak is

likely attributed to another combination of blocks. In any

case, these eight blocks are neither uniform nor symmetrical,

which accounts for the non-uniform distribution of

computational complexity.

Figure 4. Experimental results of LRPO. X is the

position of signs. Y is the number of clauses generated.

The explanation regarding Figure 4 illustrates the relationship

between symbols and computational complexity. The

horizontal axis represents each part of the symbols, while the

vertical axis shows the computational complexity. Overall,

the plotted relationship between computational complexity

and symbols indicates that the density is not uniformly

distributed. Some areas are denser than others, suggesting

that denser regions correspond to types of programs that can

be computed. Next, when the four symbols and their

computational complexities are divided into two parts and

categorized into eight blocks (A to H), it becomes clear that

the computational complexity for each symbol is not entirely

symmetrical. Particularly for Symbol 1, significant

asymmetry is observed in regions such as A and D. As a

general trend, the first symbol achieves higher computational

complexity when installed earlier, whereas the third symbol

reduces computational complexity when installed later.

However, the overall distribution remains irregular, and this

irregularity is likely due to interdependencies between the

symbols. Individually, installing the first symbol at the

beginning results in higher computational complexity and

longer execution times. On the other hand, the third symbol

tends to reduce computational complexity when delayed,

even though this reduces the number of executable programs.

This trade-off explains the uneven histogram observed. In

terms of block combinations, the histogram in Figure 1 can

be explained using blocks A to H. Specifically, blocks B and

C contribute to the largest peak, while the second peak is

likely attributed to another combination of blocks. In any

case, these eight blocks are neither uniform nor symmetrical,

“Bimodality of the Proof Complexity on Boolean Ring”

5523 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025

which accounts for the non-uniform distribution of

computational complexity.

V. DISCUSSION

The experimental results of LRPO turned out to be highly

complex. Here, we discuss the number of proof clauses,

focusing on whether the structure exhibits unimodality or

multimodality in this case, bimodality. There are several

reasons for this. First, since the placement of symbols

interacts with each other, it affects the complexity of the

proof. Therefore, rather than the position of symbols

independently influencing the proof complexity, the mutual

interaction of symbol positions contributes to forming such a

complex multimodal structure. Additionally, as is commonly

observed, the computational complexity and density of proof

complexity are not uniform across symbols. Due to the

superposition of distributions with different densities, the

structure does not remain unimodal but instead exhibits

multimodality, and in this case, bimodality. Consequently, a

linear search approach is unlikely to be effective in

identifying the optimal lex pattern. In other words, since

symbols within the lex pattern interact with each other, a

simple linear search is not particularly effective. To

determine the optimal symbol placement, that is, the

arrangement of symbol positions that minimizes proof

complexity, some form of heuristic approach is likely

required.

VI. RELATED WORK

These are the manuscript preparation guidelines used as a

standard template. Author must follow these instructions and

ensure that the manuscript is carefully aligned with these

guidelines including headings, figures, tables and references.

Manuscripts with poor or no typesetting are not preliminary

approved and consider for review. The study presented in this

paper is closely related to several research fields. First, the

quantification of proof complexity through the number of

generated clauses aligns with computational complexity

theory and proof theory. Notable related

works include Cook’s ”The complexity of theorem-proving

procedures” [5] and Buss’s ”Handbook of Proof Theory” [6],

which explore foundational aspects of proof complexity.

Second, the research on Labeled Recursive Path Ordering

(LRPO) and term rewriting systems provides a significant

background for the efficient handling of computational

processes. Key studies, such as Dershowitz’s ”Termination of

rewriting” [7] and Jouannaud and Lescanne’s ”On multiset

orderings” [8], offer insights into methods ensuring

termination and efficiency in rewriting systems, directly

influencing the techniques discussed in this paper. Third, the

study leverages properties of Boolean rings and their

algebraic structures. Seminal works like Halmos’s ”Boolean

algebras” [9] and Huntington’s ”Sets of independent

postulates for the algebra of logic” [10] investigate the

relationship between Boolean rings and Boolean algebras,

providing a mathematical foundation for the algebraic

characteristics examined in the paper. Fourth, the use of the

given-clause algorithm, as implemented in the OTTER

automated theorem-proving system, forms a cornerstone of

this study. Foundational works such as McCune’s ”OTTER

3.0 Reference Manual and Guide” [11] and Sutcliffe and

Suttner’s ”The CADE ATP System Competition” [12] detail

the algorithm’s framework and its application in automated

reasoning. Fifth, the analysis of distributions and

complexities, particularly bimodal distributions, is rooted in

statistical methodologies. Mitzenmacher’s ”A brief history of

generative models for power law and lognormal

distributions” [13] provides a relevant perspective on the

emergence of non-unimodal distributions, aiding the

interpretation of the paper’s experimental findings. Finally,

research on the optimization of symbol orderings and their

impact on algorithm efficiency is directly relevant. Baader

and Nipkow’s ”Term Rewriting and All That” [14]

discusses the role of symbol orderings in improving

computational processes, mirroring the focus of this paper on

the complexity associated with arranging ten symbols. These

areas collectively establish a robust theoretical and

methodological foundation for the paper’s investigation into

proof complexity, symbol orderings, and algebraic structures,

while also offering directions for further exploration

REFERENCES

1. McCune, W.: 1994b, Otter 3.0 Reference Manual and

Guide, Technical Report ANL-94/6 Technical report,

Argonne National Laboratory, Argonne, Illinois.

2. William McCune, ”Experiments with Given-Clause

Algorithm in Otter,”Journal of Automated Reasoning

(JAR), March 1997

3. Gerard Huet, Jean-Marie Hullot, ”Lexicographic Path

Orderings and Applications to Term Rewriting

Systems,” Journal of Symbolic Computation, June

1982

4. Garrett Birkhoff, ”Boolean Rings and Their

Applications,” Transactions of the American

Mathematical Society, April 1935

5. Cook, S. A. (1971). ”The complexity of theorem-

proving procedures.” Proceedings of the third annual

ACM symposium on Theory of computing, pp.

151?158.

6. Buss, S. R. (1998). Handbook of Proof Theory. North-

Holland. Dershowitz, N. (1987). ”Termination of

rewriting.” Journal of SymbolicComputation, 3(1-2),

69?116.

7. Jouannaud, J.-P., and Lescanne, P. (1982). ”On

multiset orderings.” Information Processing Letters,

15(2), 57?63.

8. Dershowitz, N. (1987). ”Termination of rewriting.”

Journal of Symbolic

9. Halmos, P. R. (1963). Boolean algebras. Springer.

“Bimodality of the Proof Complexity on Boolean Ring”

5524 Ruo Ando 1, IJMCR Volume 13 Issue 08 August 2025

10. Huntington, E. V. (1904). ”Sets of independent

postulates for the algebra of logic.” Transactions of

the American Mathematical Society, 5(3), 288-309.

11. McCune, W. (1994). OTTER 3.0 Reference Manual

and Guide. Argonne National Laboratory

12. Sutcliffe, G., and Suttner, C. (1998). ”The CADE

ATP System Competition.” Automated

Deduction?CADE-14, pp. 128?143. Springer.

13. Mitzenmacher, M. (2004). ”A brief history of

generative models for power law and lognormal

distributions.” Internet Mathematics, 1(2), 226?251.

14. Baader, F., and Nipkow, T. (1998). Term Rewriting

and All That.Cambridge University Press.

