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A B S T R A C T

Kilic et al. reviewed machine learning (ML) and deep learning (DL) for sleep apnea detection, emphasizing 
explainable AI (XAI) while noting challenges like Apnea-Hypopnea Index (AHI) discrepancies. This paper extends 
their critique, arguing that XAI tools like SHAP inherit model biases, and high prediction accuracy does not 
guarantee reliable feature importances, which inherently lack ground truth validation. To overcome these lim
itations and build clinical trust, we advocate for a comprehensive approach combining unsupervised ML (e.g., 
feature agglomeration, highly variable gene selection) with nonlinear nonparametric statistical methods (e.g., 
Spearman’s correlation). This strategy robustly evaluates variable relationships and p-values, particularly for 
monotonic associations, mitigating misapplications stemming from assumption violations and inadequate 
interpretation of model ground truth, thus fostering real-world applicability.

Kilic et al. conducted a systematic review and meta-analysis on the 
diagnostic accuracy of machine learning (ML) and deep learning (DL) 
algorithms for detecting sleep apnea via electrocardiograms [1]. They 
underscored the vital importance of evaluating sensitivity and speci
ficity, noting that high sensitivity minimizes missed apnea events while 
high specificity reduces false positives that could lead to unnecessary 
follow-up testing. By pooling individual study results, they were able to 
estimate overall diagnostic performance and examine sources of het
erogeneity, such as differences in study design, patient populations, and 
signal preprocessing pipelines. To address the often-criticized black-box 
nature of DL models, the authors advocated for the integration of 
explainable AI methods such as SHAP, LIME, and GradCAM. These ap
proaches assign contribution scores to input features or highlight salient 
regions in input signals, with the aim of making model decisions more 
transparent to clinicians. However, Kilic et al. also identified significant 
challenges—most notably, variability in Apnea-Hypopnea Index (AHI) 
thresholds used to define sleep apnea severity, the reliance on ICD 
coding rather than standardized polysomnography scoring, and the 
under-representation of subclinical or borderline cases. Such in
consistencies can limit the comparability of model performance across 
studies and erode physician trust, ultimately hindering real-world 
deployment [1].

Furthermore, while Kilic et al. highlighted the limitations of 
explainable AI techniques like SHAP in providing clarity about true 
variable relationships, primarily because SHAP values rely on estimated 
conditional expectations rather than known distributions, this paper 
advocates for a more comprehensive strategy. We propose combining 
unsupervised machine learning methods such as feature agglomeration 
and selection of highly variable genes or signal features with nonlinear, 

nonparametric statistical tools like Spearman’s rank order correlation 
with p-values. Feature agglomeration first groups features that exhibit 
strong pairwise correlations, thereby reducing dimensionality and 
highlighting coherent clusters of physiological or genetic signals. In 
high-dimensional data settings, selecting features with the greatest 
variance focuses analysis on the most informative dimensions and mit
igates noise from low-variance measurements. Following feature 
reduction, Spearman’s correlation tests for monotonic relationships 
without assuming linearity or normality. Because it uses rank informa
tion, Spearman’s rho remains robust to outliers and skewed distribu
tions, and exact or permutation-based p values enable rigorous control 
of false discovery rates. By integrating these unsupervised and statistical 
methods alongside explainable AI, one can distinguish model-driven 
attributions from genuine data-driven associations.

Supervised ML models, including tree-based ensembles and DL net
works, typically benefit from ground-truth labels—such as the presence 
or absence of sleep apnea confirmed by polysomnography—that enable 
calculation of sensitivity, specificity, accuracy, and AUC. In contrast, the 
feature importance scores extracted post hoc from these models do not 
have an objective ground truth against which to validate their correct
ness. This distinction gives rise to two separate notions of accuracy in 
supervised learning: the accuracy of outcome predictions and the reli
ability of feature importance measures. A model may achieve excellent 
prediction accuracy yet still assign misleading importance to features, 
whether due to confounding variables, overfitting on spurious correla
tions, or biases inherited from the training data [2–10]. Although 
explainable AI tools such as SHAP improve model transparency by 
attributing outputs to inputs, they are inherently model-specific and 
thus will propagate any biases present in the trained model [11–18]. In 
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practice, this means that reliance on a single explainability method can 
lead to overconfidence in features that are artifacts of the algorithm or 
dataset rather than true physiological drivers of sleep apnea.

This paper delineates three categories of methodological misappli
cation that can result in flawed conclusions and diminished clinical 
utility. First, violation of statistical or explainability tool assumptions, 
for example, using a test that presumes independent observations when 
data are longitudinal or neglecting to verify distributional requirements, 
can invalidate p values, confidence intervals, and attribution scores. 
Second, misinterpretation of model-derived ground truths occurs when 
practitioners treat feature importance scores or model outputs as if they 
were directly measured biological effects, without accounting for label 
noise, measurement error, or sampling bias. This is the category most in 
need of scrutiny, as it directly undermines the trustworthiness of sci
entific inferences and clinical decisions. Third, critical preprocessing 
errors—such as applying scaling or normalization inconsistently across 
training, validation, and test sets or performing feature selection on the 
entire dataset rather than within cross-validation folds—can introduce 
data leakage and artificially inflate both performance metrics and 
feature importance estimates. By addressing these misapplications and 
adopting a complementary toolkit of explainable AI, unsupervised 
clustering, and robust nonparametric inference, researchers can develop 
sleep apnea detection models that deliver not only high prediction ac
curacy but also dependable, interpretable insights for clinical practice.
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