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Letter to the Editor

Letter to the Editor regarding “Prediction of PFAS bioaccumulation in different plant tissues with 
machine learning models based on molecular fingerprints” by Song et al. (2024), Sci. Total 
Environ. 950 175091

H I G H L I G H T S

• Machine learning predicts PFAS plant uptake.
• XGBoost/SHAP modeling shows predictive capability.
• Feature importance analysis critically evaluated.
• XGBoost & SHAP biases impact interpretations.
• Robust feature selection: non-parametric methods recommended
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A B S T R A C T

Song et al. (2024), “Prediction of PFAS bioaccumulation in different plant tissues with machine learning models 
based on molecular fingerprints,” employed machine learning methods, such as XGBoost and SHapley Additive 
exPlanations (SHAP), to predict PFAS bioaccumulation, reporting high predictive accuracy. However, this 
commentary critically examines their interpretation of feature importance, since high predictive accuracy does 
not guarantee reliable feature importance. Both XGBoost and SHAP are known to exhibit biases, such as over-
emphasizing features used in early splits and inheriting biases from the underlying model. Furthermore, the high 
dimensionality and potential collinearity of molecular fingerprints complicate SHAP interpretation, increasing 
overfitting risk and compromising SHAP value stability. To provide a general example, we conducted an inde-
pendent simulation using a publicly available dataset of US industrial facilities and environmental compliance, 
demonstrating significant discrepancies between feature importance rankings from XGBoost and robust statis-
tical tests. This commentary advocates for robust statistical methods coupled with p-values, including Spearman's 
rho, Kendall's tau, Goodman-Kruskal's gamma, Somers' delta, and Hoeffding's dependence, for feature selection. 
These non-parametric methods, which are independent of specific model assumptions and rely on data ranks, are 
better suited to capture complex relationships in high-dimensional data, providing a more reliable foundation for 
future PFAS bioaccumulation research.

1. Introduction

The recent publication by Song et al., “Prediction of PFAS bio-
accumulation in different plant tissues with machine learning models 
based on molecular fingerprints,” presents several critical issues that 
necessitate further discussion (Song et al., 2024). Their objective was to 
develop a machine learning model for predicting the bioaccumulation 
factors (BAFs) of per- and polyfluoroalkyl substances (PFASs) in various 
plant tissues, including roots, stems, leaves, and fruits. They demon-
strated the key influential features affecting model predictions using the 
Extreme Gradient Boosting (XGB) model and SHapley Additive exPla-
nations (SHAP). This analysis revealed that the key influential features 
varied among different plant tissues. For instance, soil organic matter 
(OM) was the most significant factor for roots and stems. In contrast, 
ECFP-347 was the most influential for leaves and fruits. Their model 
demonstrated strong performance, with coefficients of determination 

(R2) ranging from 0.82 to 0.93.
While Song et al. (2024) have made a significant contribution to the 

field of PFAS risk assessment, this paper raises critical concerns 
regarding the interpretation of feature importances derived from XGB 
and SHAP. Although they achieved high R2 values, it is crucial to 
distinguish between predictive accuracy and the reliability of feature 
importance. As discussed extensively in over 100 peer-reviewed articles, 
high predictive accuracy does not guarantee the validity of feature 
importance rankings (Fisher et al., 2019). A detailed discussion and 
supporting references are provided in the supplementary material.

2. Limitations of XGB

XGB, like other tree-based models, exhibits inherent biases in feature 
importance calculations due to its tree-building process, which can 
overemphasize the importance of features used in earlier splits (Adler 
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and Painsky, 2022; Alaimo Di Loro et al., 2023; Ugirumurera et al., 
2024). In the specific context of Song et al.'s study, the high dimen-
sionality of molecular fingerprints increases the risk of overfitting, 
leading the model to capture noise rather than true signal. Put simply, a 
common drawback of machine learning models, including XGB, is their 
propensity to overfit by prioritizing less relevant features in a greedy 
pursuit of marginal gains in predictive accuracy. Even with regulariza-
tion techniques employed to mitigate overfitting, these inherent archi-
tectural biases persist.

3. Limitations of SHAP

Crucially, SHAP values, while seemingly insightful, inherit and can 
even exacerbate biases from the underlying model (Bilodeau et al., 
2024; Huang and Marques-Silva, 2024; Kumar et al., 2021; Lones, 
2024). This dependency is evident in the SHAP calculation itself, which 
directly utilizes the function ‘explain = SHAP(model)’. Since SHAP 
sorely relies on the model's output for its explanations, it is inherently 

vulnerable to the model's biases. For instance, overfitting caused by XGB 
can manifest in SHAP values, thereby highlighting features that appear 
spuriously important due to the model's overfitting. Consequently, SHAP 
presents a significant drawback: it lacks the capacity to rectify the biases 
inherent in XGB and instead reinforces these biases indiscriminately. 
Therefore, interpreting SHAP values as definitive indicators of genuine 
feature importance is problematic.

4. Validation challenges

Fundamentally, the absence of ground truth values for feature 
importance makes validation extremely challenging. Different models 
use distinct methodologies for calculating feature importance, resulting 
in model-specific biases and varying rankings. As previously stated, 
machine learning models exhibit a propensity to introduce overfitting 
biases in their endeavor to improve predictive accuracy. Consequently, 
feature importance rankings that demonstrate high predictive accuracy 
do not necessarily reflect genuine associations. It is essential to 

Table 1 
Feature importance rankings from XGB and statistical tests for penalized factories. The colored cells within 
the table identify key variables pertaining to a facility's environmental compliance status: FAC_COM-
PLIANCE_STATUS (the compliance status of the facility with environmental regulations), FAC_PROG-
RAMS_WITH_SNC (the number of environmental programs with significant non-compliance at the facility), 
and FAC_SNC_FLG (indicating whether the facility has significant non-compliance issues).

Rank
XGBoost Spearman's Rho Kendall's Tau

Variable Importances Variable Coefficient p-Value Variable Coefficient p-Value

1
FAC_QTRS_WI

TH_NC
0.295 

FAC_QTRS_WIT

H_NC
0.363 0.000 

FAC_QTRS_WIT

H_NC
0.351 0.000 

2 TRI_FLAG 0.125 TRI_FLAG 0.288 0.000 TRI_FLAG 0.288 0.000 

3 AIR_FLAG 0.080 GHG_FLAG 0.279 0.000 GHG_FLAG 0.279 0.000 

4 GHG_FLAG 0.073 
FAC_COMPLIAN

CE_STATUS
0.264 0.000 

FAC_PROGRAM

S_WITH_SNC
0.264 0.000 

5 Status 0.060 
FAC_PROGRAM

S_WITH_SNC
0.264 0.000 FAC_SNC_FLG 0.263 0.000 

6 NPDES_FLAG 0.037 FAC_SNC_FLG 0.263 0.000 
FAC_COMPLIAN

CE_STATUS
0.260 0.000 

7 RCRA_FLAG 0.037 CWA 0.178 0.000 CWA 0.178 0.000 

8 State 0.036 NPDES_FLAG 0.178 0.000 NPDES_FLAG 0.178 0.000 

9 Federal Facility 0.036 SDWIS_FLAG 0.138 0.000 SDWIS_FLAG 0.138 0.000 

10 Region 0.033 RCRA 0.118 0.000 RCRA 0.118 0.000 

11 Industry 0.028 RCRA_FLAG 0.118 0.000 RCRA_FLAG 0.118 0.000 

12
FAC_COMPLIA

NCE_STATUS
0.027 Status −0.111 0.000 Status −0.111 0.000 

13
FAC_PROGRA

MS_WITH_SNC
0.027 CAA 0.101 0.000 CAA 0.101 0.000 

14 FAC_POP_DEN 0.024 AIR_FLAG 0.101 0.000 AIR_FLAG 0.101 0.000 

15
FAC_PERCENT

_MINORITY
0.023 Region −0.062 0.000 Region −0.054 0.000 

16
EJSCREEN_FLA

G_US
0.023 State 0.056 0.000 State 0.047 0.000 

17 SDWIS_FLAG 0.019 Federal Facility 0.030 0.000 Federal Facility 0.030 0.000 

18 RCRA 0.015 
FAC_PERCENT_

MINORITY
0.029 0.000 

FAC_PERCENT_

MINORITY
0.025 0.000 

19 FAC_SNC_FLG 0.000 
EJSCREEN_FLA

G_US
0.016 0.000 

EJSCREEN_FLA

G_US
0.016 0.000 

20 CAA 0.000 FAC_POP_DEN 0.007 0.031 FAC_POP_DEN 0.006 0.031 
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recognize that numerous prior studies have misinterpreted this crucial 
aspect. This issue is particularly salient in Song et al.'s study, which 
employs complex molecular fingerprints as features. The high dimen-
sionality and potential collinearity of these fingerprints significantly 
complicate the interpretation of SHAP values. Molecular fingerprints, 
encoding structural information, can have thousands of dimensions, 
making it difficult to isolate individual feature effects. Collinearity can 
cause SHAP values to distribute importance across correlated features, 
thus diluting the perceived importance of individual features. The 
complexity of molecular fingerprints also renders SHAP values suscep-
tible to even small changes in the data or model, leading to significant 
shifts in their values and compromising their stability and reliability as 
indicators of feature importance. For example, minor dataset variations 
or slight model parameter modifications can substantially alter SHAP 
values, reducing their dependability for consistent feature importance 
assessment.

5. Proposed solutions

To address these limitations, we propose focusing on three critical 
aspects: data distribution, statistical relationships between variables, 
and statistical validation. Understanding data distribution is crucial for 
selecting appropriate modeling techniques. Investigating statistical in-
teractions, particularly with non-parametric approaches, is essential for 
capturing complex relationships. Furthermore, statistical validation, 
including hypothesis testing and p-value analysis, is vital for ensuring 
observed relationships are not due to chance. These three aspects are 
comprehensively addressed by robust statistical methods. Instead of 
relying on XGB and SHAP for feature selection, we advocate for unbi-
ased, robust statistical methods, such as Spearman's rho and Kendall's 
tau, coupled with p-values (Okoye and Hosseini, 2024). These are 

particularly well-suited for assessing monotonic relationships. Other 
suitable non-parametric methods include Goodman-Kruskal's gamma, 
Somers' delta, and Hoeffding's dependence, effective for complex re-
lationships like non-monotonic collinearity and interactions 
(Metsämuuronen, 2021).

6. Simulation results

Given the proprietary nature of the dataset referenced in Song et al. 
(2024), we conducted an independent validation utilizing the publicly 
accessible PFAS Industry Sectors Dataset, a compilation from the U.S. 
Environmental Protection Agency's open data, aggregated within the 
PFAS Central Data Hub (2025). This dataset represents the most 
authoritative and reliable publicly available resource for PFAS-related 
analyses. As shown in Table 1, we analyzed 21 features to determine 
the factors influencing regulatory penalties across 7916 U.S. industrial 
facilities. Variable descriptions are provided in Table 2. Notably, while 
the top two feature importances exhibited concordance between XGB 
and statistical testing, substantial deviations were observed from the 
fourth rank onwards. Specifically, XGB ranked “Compliance Status” 
below twelfth, while statistical methods ranked it fourth to sixth.

7. Discussion

The counterintuitive bias displayed by XGB is demonstrably linked to 
its prioritization of marginal gains in prediction accuracy, as evidenced 
by the 20-fold cross-validation results presented in Table 3. With all 21 
features, using the exact same variables, both XGB and statistical tests 
naturally achieved comparable prediction accuracies (0.822–0.845). 
However, when restricted to the top 10 features, XGB maintained its 
accuracy (0.822–0.845), while statistical test accuracy declined slightly 
(0.805–0.832). This discrepancy reveals that XGB, in its pursuit of a 
mere 1 % increase in prediction accuracy, unjustifiably downplayed the 
significance of “Compliance Status,” a feature of undeniable critical 
importance. The inherent biases within XGB are thus unequivocally 
established. Given that SHAP values are derived from XGB outputs, it is 
logically and empirically sound to conclude that SHAP values will 
similarly inherit these biases, compromising the integrity of subsequent 
interpretations.

8. Conclusion

In summary, while the study demonstrates promising predictive 
performance, its reliance on XGB and SHAP for feature selection raises 
significant concerns about the validity of the reported feature impor-
tances. We recommend a reassessment using robust statistical methods. 
This approach, by prioritizing statistical rigor and minimizing model- 
specific biases, will not only address the potential discrepancies in the 
current findings but also provide a more robust foundation for future 
research in this area.
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Table 2 
Variable descriptions (alphabetical order).

Variable Description

AIR_FLAG Indicates whether the facility has air pollution 
permits or violations.

CAA Refers to the Clean Air Act, a U.S. federal law that 
regulates air emissions.

CWA Refers to the Clean Water Act, a U.S. federal law that 
regulates water pollution.

EJSCREEN_FLAG_US Indicates potential environmental justice concerns 
based on EPA's EJSCREEN tool.

FAC_COMPLIANCE_STATUS The compliance status of the facility with 
environmental regulations.

FAC_PERCENT_MINORITY The percentage of minority population living near 
the facility.

FAC_POP_DEN The population density near the facility.
FAC_PROGRAMS_WITH_SNC The number of environmental programs with 

significant non-compliance at the facility.
FAC_QTRS_WITH_NC The number of quarters with non-compliance at the 

facility.
FAC_SNC_FLG Indicates whether the facility has significant non- 

compliance issues.
Federal Facility Indicates whether the facility is owned or operated 

by the federal government.
GHG_FLAG Indicates whether the facility reports greenhouse gas 

emissions.
Industry The industry sector of the facility.
NPDES_FLAG Indicates if facility has water discharge permit.
RCRA Refers to the U.S. law regulating solid and hazardous 

waste.
RCRA_FLAG Indicates whether the facility is regulated under 

RCRA.
Region The EPA region where the facility is located.
SDWIS_FLAG Indicates if facility is under drinking water 

regulations.
State The U.S. state where the facility is located.
Status The operational status of the facility.
TRI_FLAG Indicates whether the facility reports to the Toxic 

Release Inventory.

Table 3 
Prediction accuracy of XGB and statistical tests for penalized factories.

XGBoost Spearman's Rho Kendall's Tau

All 21 variables 0.822–0.845 0.822–0.845 0.822–0.845
Top 10 variables 0.825–0.845 0.805–0.832 0.805–0.832
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2025.179714.

Data availability

Python code and data set are publicly available at GitHub site: 
https://github.com/souichi-oka/pfas-analysis.
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