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A composite theory-guided framework for robust feature attribution in PM₂.₅ ionic 
composition modeling
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A B S T R A C T

Kang et al. (2025) developed a theory guided framework that fuses satellite observations, land use regression and 
extreme gradient boosting to map PM₂.₅ ionic species across Taiwan with SHAP for feature attribution. Despite 
high predictive accuracy, model specific importance scores from tree based methods may misrepresent true 
associations due to hyperparameter sensitivity, multicollinearity and data imbalance. We advocate a composite 
strategy combining unsupervised feature agglomeration to cluster correlated predictors, highly variable gene 
selection to identify dominant covariates and Spearman rank correlation with p-value testing to quantify 
monotonic relationships without distributional assumptions. This pipeline yields stable interpretable importance 
rankings under bootstrapping and cross validation. SHAP attributions remain useful for exploring interactions 
but require independent validation with input perturbations, alternative models or simulated ground truth data 
to ensure reliability.

Kang Lo et al. (2025) developed a theory-guided framework that 
fuses satellite observations, land-use regression (LUR), and machine 
learning to map the spatiotemporal distribution of PM₂.₅ ionic species 
across Taiwan. First, LUR draws on domain knowledge to screen and 
construct candidate predictors; next, extreme gradient boosting 
(XGBoost) builds a highly nonlinear, high-resolution prediction model; 
and finally, Shapley additive explanations (SHAP) decompose the fitted 
ensemble's output to quantify each feature's marginal impact. By 
combining hypothesis-driven feature selection with powerful modeling 
and transparent attribution, their approach delivers both accurate esti
mates and interpretable insights into the drivers of PM₂.₅ composition.

Despite the appeal of combining LUR, XGBoost and SHAP, key 
theoretical and empirical challenges arise because the importance scores 
produced by XGBoost are purely model-specific indicators of how each 
variable contributes to reducing prediction error within that particular 
ensemble, not measures of true associations or causal effects. In contrast, 
predictive accuracy can be directly verified by comparing model outputs 
to held-out PM2.5 measurements and computing well-understood met
rics such as root mean squared error or R2. Feature importance scores, 
however, are generated internally, often according to gain, cover or 
impurity-reduction criteria, and there is no independent benchmark 
against which to validate them. As a result, even a model that forecasts 
exceptionally well can assign exaggerated importance to variables that 
interact favorably with the chosen algorithm settings, especially under 
multicollinearity, unbalanced data or particular choices of tree depth 
and learning rate. In other words, high target prediction accuracy does 
not guarantee reliable feature importances (Parr et al., 2024; Watson 
and Wright, 2021; Molnar et al., 2022; Lipton, 2018; Fisher et al., 2019; 
Lenhof et al., 2024; Mandler and Weigand, 2024; Potharlanka and Bhat, 
2024; Wood et al., 2024). A review of more than three hundred peer- 
reviewed studies has documented these systematic biases in tree-based 
models, revealing that high-variance or correlated features frequently 

receive inflated importance while genuinely relevant but less variable 
predictors are underestimated. Because feature importance in super
vised learning reflects each variable's contribution to the model's pre
dictions rather than its real-world association with the outcome, treating 
those scores as evidence of ecological or causal drivers risks drawing 
misleading conclusions.

SHAP explanations using the call explain = SHAP(model = XGBoost) 
assign each predictor a numerical contribution by averaging its marginal 
impact across all possible subsets of features. Although this approach 
provides a detailed breakdown of how the fitted XGBoost ensemble ar
rives at each prediction, it does not eliminate the biases that already 
exist in the model's internal structure. SHAP treats the learner as a black 
box and derives attribution values directly from its response surface. If 
the base XGBoost model has overemphasized a correlated or high vari
ance feature or has underweighted a weaker but truly important vari
able, those distortions will be inherited by the SHAP values and can even 
be magnified by the exhaustive subset averaging (Wu, 2025; Bilodeau 
et al., 2024; Huang and Marques-Silva, 2024; Kumar et al., 2021; 
Hooshyar and Yang, 2024; Lones, 2024; Molnar et al., 2022; Létoffé 
et al., 2025). In other words, SHAP does not act as a debiasing layer but 
merely decomposes whatever patterns and artifacts the model has 
captured. To gain confidence that high SHAP scores reflect genuine 
ecological or causal drivers rather than algorithmic quirks, researchers 
must complement SHAP with independent validation— for example, 
perturbing inputs to test attribution stability, employing simulated 
datasets with known feature effects or using orthogonal causal inference 
methods. Without such checks, interpreting SHAP values from a biased 
learner remains unsafe.

Because no single supervised learner can recover unbiased true as
sociations from complex observational data, we recommend a composite 
theory guided strategy alongside or instead of Shapley additive expla
nations for XGBoost. The first step applies unsupervised feature 
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engineering to tame multicollinearity and reduce dimensionality by 
using feature agglomeration (FA) to group highly correlated predictors 
into clusters for more stable, lower dimensional representations and 
highly variable gene selection (HVGS) adapted to environmental cova
riates to identify the variables with the greatest spatiotemporal variance. 
Next, predictor and outcome relationships are quantified with non- 
target supervised statistical methods Spearman's rank correlation com
bined with rigorous p-value testing; this nonlinear nonparametric sta
tistic captures any monotonic association without imposing linearity or 
distributional assumptions and yields feature rankings that remain 
consistent under bootstrapping and cross validation.

Unsupervised methods like FA and HVGS operate without labels and 
leverage variance structure to simplify data before any outcome is 
considered. By clustering correlated variables and retaining the most 
variable, informative features, they reduce multicollinearity and noise, 
yielding stable, low-dimensional representations that are less suscepti
ble to label-driven bias or model misspecification. In contrast, super
vised feature importance reflects contributions to prediction rather than 
true associations and can be distorted by confounding, feedback, or 
correlated predictors. Pairing the unsupervised step with Spearman's 
rank correlation and rigorous p-value testing quantifies monotonic re
lationships without strong distributional assumptions, producing 
feature rankings that are more stable under resampling and closer to 
underlying associations than rankings from a single supervised learner 
or post-hoc tools like SHAP for XGBoost.

Lacking access to the datasets used by Kang et al., we evaluated 
feature selection on the MNIST benchmark (70,000 samples; 784 fea
tures). Empirically, feature agglomeration (FA) and highly variable gene 
selection (HVGS) produced notably more stable feature rankings, 
whereas XGBoost exhibited greater instability in its ranked importances. 
Across methods, Random Forest achieved a cross-validated accuracy of 
0.8861 ± 0.0025 but was highly unstable, XGBoost reached 0.8172 ±
0.0034 and was likewise highly unstable, FA achieved 0.8368 ± 0.0021 
with stable rankings, HVGS reached 0.8441 ± 0.0023 with stable 
rankings, and Spearman attained 0.5196 ± 0.0030, also with stable 
rankings. For the stability assessment, we repeatedly selected the top 30 
features from the full set across the five methods, performed cross- 
validation, then removed the single highest-ranked feature from the 
full set to form a reduced dataset, reselected the top 29 features, and 
compared the resulting ranking orders. For reproducibility and trans
parency, the Python script mniststability.py, which reports cross- 
validation accuracy and the top-10 feature rankings for XGBoost, FA, 
HVGS, and Spearman, is publicly available on GitHub (GitHub, 2025).

In contrast, SHAP attributions inherit distortions from the underlying 
XGBoost model due to factors such as sensitivity to hyperparameters, 
multicollinearity, data imbalance and variance, which can cause un
stable importance rankings across repeated fits. By integrating FA, 
HVGS and Spearman correlation, researchers can produce reproducible, 
interpretable importance estimates that are less vulnerable to the algo
rithmic quirks of post hoc attribution methods, while reserving SHAP 
values as a complementary diagnostic for complex interactions only 
after validating their rankings against input perturbations, alternative 
modeling choices and simulated ground truth data.
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