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A B S T R A C T

Background: Bhat et al. (2025) highlight the significant role of artificial intelligence (AI) and machine learning 
(ML) in food authentication through advanced algorithms that analyze large datasets for patterns associated with 
food fraud.
Objective: This paper aims to critically assess the approach of Bhat et al., with a specific focus on model-based 
feature importance and the biases related to traditional machine learning methods.
Methods: The paper distinguishes between machine learning target predictions and feature importances, advo-
cating for the rigorous application of robust statistical techniques, including Spearman’s correlation and p- 
values, to accurately reveal genuine associations among variables.
Results: The analysis emphasizes the necessity for researchers to comprehend the foundational principles of AI 
and ML to avoid misapplication of these technologies.
Conclusion: The paper recommends integrating both nonparametric and nonlinear methods to effectively reduce 
bias and improve the reliability of feature importance assessments in food authentication.

Bhat et al. (2024) reported on advanced methods in food authenti-
cation, emphasizing the significant roles of artificial intelligence (AI) 
and machine learning (ML). These technologies utilize sophisticated 
algorithms to analyze extensive datasets, effectively identifying patterns 
that indicate potential food fraud. In the context of spectral data anal-
ysis, variable selection is crucial, as it not only reduces measurement 
costs but also enhances model performance and facilitates clearer in-
terpretations. Popular chemometric techniques for analyzing spectral 
data include genetic algorithms (GA), interval partial least squares 
regression (iPLS), model evaluation and factor analysis, as well as 
model-based feature importance statistics (Bhat, 2024).

While this paper acknowledges the advancements in smart food 
authentication aimed at enhancing safety and quality, as reviewed by 
Bhat et al., it raises critical concerns regarding model-based feature 
importance. Numerous studies, including over 100 peer-reviewed arti-
cles, have underscored the prevalence of biased feature importances 
generated by machine learning models, leading to potentially inaccurate 
conclusions across various applications in general, including food 
authentication (Asilian Bdgoli, 2022; Curchoe, 2020; Demircioğlu, 
2021; Feng, 2024; Grandhi & Singh, 2024; Krawczuk & Łukaszuk, 2016; 
Shiue, Guh, & Tseng, 2009). While machine learning target predictions 
are based on ground truth values, feature importances from machine 
learning models do not possess equivalent reference points for valida-
tion. Consequently, there is a need for bias-free and robust statistical 
methods such as Spearman’s correlation with p-values (Eden, Li, & 
Shepherd, 2022; Liu, Li, Wanga, & Shepherd, 2018; Yu & Hutson, 2024).

Notably, Bhat et al. did not clearly distinguish between machine 
learning target predictions and feature importances, which is crucial for 
a comprehensive understanding of the methodologies involved (Asilian 
Bidgoli, 2022; Demircioğlu, 2021; Grandhi & Singh, 2024; Krawczuk & 

Łukaszuk, 2016). This paper advocates for the use of machine learning 
target predictions while strongly discouraging the reliance on feature 
importances derived from these models. By promoting a clearer differ-
entiation between these two aspects, this paper aims to improve the 
rigor and reliability of machine learning applications in food 
authentication.

The misuse of AI and ML methods is widespread across various dis-
ciplines (Takefuji, 2024a, 2024b; 2024c; 2024d; 2024e), largely due to 
the fact that researchers often have deep expertise in their specific do-
mains but may lack proficiency in numerical algorithms and bias 
assessment techniques. This gap in knowledge can lead to the inadver-
tent application of these sophisticated tools without fully understanding 
their limitations and potential pitfalls. Addressing this issue is crucial for 
improving the reliability of results in food authentication and ensuring 
that AI and ML are utilized appropriately and effectively in this critical 
area.

One critical issue is that feature importances derived from machine 
learning models should not be used for food authentication due to their 
model-specific nature. This variability indicates that different machine 
learning algorithms employ distinct methodologies for calculating 
feature importance, resulting in disparate degrees of bias and potential 
misinterpretation of the data. This paper advocates for the use of true 
associations between the target and features employing robust bias-free 
statistical methods such as Spearman’s correlation with p-values (Eden 
et al., 2022; Liu et al., 2018; Yu & Hutson, 2024).

Moreover, it is essential for practitioners utilizing AI and ML to 
comprehend the fundamental principles underlying these techniques 
(Chu et al., 2012; Demircioğlu, 2021; Epstein, Nallapareddy, & Ray, 
2023; Haury, Gestraud, & Vert, 2011; Montesinos-López et al., 2023; 
Shim, Lee, & Hwang, 2021; Smialowski, Frishman, & Kramer, 2010; 
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Yousef, SaçarDemirci, Khalifa, & Allmer, 2016). Unfortunately, many 
researchers fail to grasp these critical concepts. When analyzing the 
relationship between target variables and features, several key elements 
come into play. These include understanding the data distribution, 
examining the statistical relationships among variables, and validating 
statistical significance through p-values. Cross-validation is only effec-
tive for target prediction accuracy, not for feature importance accuracy.

To mitigate the impact of bias and enhance the reliability of feature 
importance assessments, it is essential to employ appropriate linear or 
non-linear, as well as parametric or nonparametric methods, alongside 
comprehensive p-value calculations (Antonelli, 2016; Cole, Edwards, 
Breskin, & Hudgens, 2021; ConzueloRodriguez et al., 2022; Hade & Lu, 
2014; Nazer et al., 2023; Pérez-Rodríguez, 2012; Vrbin, 2022). This 
multi-faceted approach not only reduces potential biases but also im-
proves the robustness of the analyses, leading to more accurate in-
terpretations and conclusions in the realm of feature importance.
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